Singapore Myocardial Infarction Registry Annual Report 2018 National Registry of Diseases Office 9 Jun 2020 ## **Acknowledgement** This report was produced with joint efforts from the following staff of National Registry of Diseases Office. Registry Coordinators Ms Yvonne Yeo Ms Halimahton Abdul Kadir Ms Li Yuan Ms Linda Ho Ms Monica Michael Ms Ng Keat Siew Ms Wendy Loke Data Manager Mr Eric Lee Biostatistician Ms Zheng Huili Deputy Director Dr Foo Ling Li Group Director Dr Annie Ling ## **Contents** | 1. | GLOSSARY | 5 | |-----|---|------------------| | 2. | EXECUTIVE SUMMARY | 6 | | 3. | INTRODUCTION | 7 | | 4. | METHODOLOGY | 8 | | 5. | FINDINGS | 10 | | 5.1 | INCIDENCE | | | ••• | Table 5.1.1: Incidence number and rate of AMI (per 100,000 population) | | | | Figure 5.1.1: Incidence rate of AMI (per 100,000 population) | 10
10 | | | Table 5.1.2: Age distribution at onset of AMI | | | | Figure 5.1.2: Age distribution at onset of AMI | | | | Table 5.1.3: Age-specific incidence rate of AMI (per 100,000 population) | 12 | | | Figure 5.1.3a: Age-specific incidence rate of AMI (per 100,000 population) across age | | | | groups | 13 | | | Figure 5.1.3b: Age-specific incidence rate of AMI (per 100,000 population) across | 40 | | | yearsTable 5.1.4: Incidence number and rate of AMI (per 100,000 population) by gender | 13
1 <i>1</i> | | | Figure 5.1.4: Incidence rate of AMI (per 100,000 population) by gender | | | | Table 5.1.5a: Age distribution at onset of AMI among males | | | | Figure 5.1.5a: Age distribution at onset of AMI among males | | | | Table 5.1.5b: Age distribution at onset of AMI among females | | | | Figure 5.1.5b: Age distribution at onset of AMI among females | | | | Table 5.1.6: Incidence number and rate (per 100,000 population) of AMI by ethnicity | | | | Figure 5.1.6: Incidence rate of AMI (per 100,000 population) by ethnicity | | | | Table 5.1.7a: Age distribution at onset of AMI among Chinese | | | | Figure 5.1.7a: Age distribution at onset of AMI among Chinese | | | | Figure 5.1.7b: Age distribution at onset of AMI among Malays | | | | Table 5.1.7c: Age distribution at onset of AMI among Indians | | | | Figure 5.1.7c: Age distribution at onset of AMI among Indians | | | | Table 5.1.8: Incidence number and rate of AMI (per 100,000 population) by subtype | | | | Figure 5.1.8: Incidence rate of AMI (per 100,000 population) by subtype | | | | Table 5.1.9a: Age distribution at onset of STEMI | | | | Figure 5.1.9a: Age distribution at onset of STEMI | | | | Table 5.1.9b: Age distribution at onset of NSTEMI Figure 5.1.9b: Age distribution at onset of NSTEMI | | | | | | | 5.2 | MORTALITY | | | | Table 5.2.1: Mortality number and rate of AMI (per 100,000 population) | | | | Figure 5.2.1: Mortality rate of AMI (per 100,000 population) | 26 | | | Table 5.2.2: Age distribution at death of AMI | | | | Figure 5.2.2: Age distribution at death of AMI | | | | Figure 5.2.3a: Age-specific mortality rate of AMI (per 100,000 population) across age | 20 | | | groups | 29 | | | Figure 5.2.3b: Age-specific mortality rate of AMI (per 100,000 population) across years | 29 | | | Table 5.2.4: Mortality number and rate of AMI (per 100,000 population) by gender | | | | Figure 5.2.4: Mortality rate of AMI (per 100,000 population) by gender | | | | Table 5.2.5a: Age distribution at death of AMI among males | | | | Figure 5.2.5a: Age distribution at death of AMI among males | | | | Table 5.2.5b: Age distribution at death of AMI among females | | | | Table 5.2.6: Mortality number and rate of AMI (per 100,000 population) by ethnicity | | | | Figure 5.2.6: Mortality rate of AMI (per 100,000 population) by ethnicity | | | | Table 5.2.7a: Age distribution at death of AMI among Chinese | | | | Figure 5.2.7a: Age distribution at death of AMI among Chinese | | | | | | | | Table 5.2.7b: Age distribution at death of AMI among Malays | 35 | |-----|---|----| | | Figure 5.2.7b: Age distribution at death of AMI among Malays | | | | Table 5.2.7c: Age distribution at death of AMI among Indians | | | | Figure 5.2.7c: Age distribution at death of AMI among Indians | | | | Table 5.2.8: Mortality number and rate of AMI (per 100,000 population) by subtype | | | | Figure 5.2.8: Mortality rate of AMI (per 100,000 population) by subtype | | | | Table 5.2.9a: Age distribution at death of STEMI | | | | Figure 5.2.9a: Age distribution at death of STEMI | 39 | | | Table 5.2.9b: Age distribution at death of NSTEMI | | | | Figure 5.2.9b: Age distribution at death of NSTEMI | 40 | | 5.3 | 30-DAY CASE FATALITY | 41 | | | Table 5.3.1: Case fatality number and rate of AMI (%) | 41 | | | Figure 5.3.1: Case fatality rate of AMI (%) | | | | Table 5.3.2: Case fatality number and rate of AMI (%) by gender | | | | Figure 5.3.2: Case fatality rate of AMI (%) by gender | | | | Table 5.3.3: Case fatality number and rate of AMI (%) by ethnicity | | | | Figure 5.3.3: Case fatality rate of AMI (%) by ethnicity | | | | Table 5.3.4: Case fatality number and rate of AMI (%) by subtype | | | | Figure 5.3.4: Case fatality rate of AMI (%) by subtype | 46 | | 5.4 | SYMPTOMS | 47 | | | Figure 5.4.1: Type of AMI symptoms (%) | 47 | | | Figure 5.4.2: Presenting symptoms of AMI (%) | | | 5.5 | RISK FACTORS | 49 | | | Figure 5.5.1: Risk factors of AMI (%) | 50 | | | Figure 5.5.2: Risk factors (%) by subtype in 2018 | | | DO | DR-TO-BALLOON TIME | 51 | | | Figure 5.6.1: Mode of arrival (%) among STEMI | 51 | | | Figure 5.6.2: DTB time by mode of arrival among STEMI | | | 6 | CONCLUSION | 54 | #### **GLOSSARY** 1. **AMI** Acute myocardial infarction Age-standardised incidence rate **ASIR** Age-standardised mortality rate **ASMR** Body mass index BMI **CFR** Case fatality rate CI Confidence interval CIR Crude incidence rate CMR Crude mortality rate Door-to-balloon DTB **ECG** Electrocardiogram ICD International Classification of Diseases Interquartile range **IQR** MHA Ministry of Home Affairs Ministry of Health MOH Monitoring Trends and Determinants in Cardiovascular Disease **MONICA** **NRDO** National Registry of Diseases Office **NRIC** National Registration Identity Card Non-ST-segment elevation myocardial infarction NSTEMI Percutaneous coronary intervention PCI Singapore Civil Defence Force **SCDF** Singapore Myocardial Infarction Registry SMIR ST-segment elevation myocardial infarction STEMI ## 2. EXECUTIVE SUMMARY The number of acute myocardial infarction (AMI) episodes increased from 6,796 episodes in 2009 to 11,887 episodes in 2018. The age-standardised incidence rate (ASIR) increased significantly from 189.4 to 225.8 per 100,000 population during this period. The number of AMI deaths was 910 in 2018, a drop compared to 1,084 in 2009. The age-standardised mortality rate (ASMR) declined significantly from 29.6 to 15.9 per 100,000 population during this period. The number of AMI deaths within 30 days from onset fell from 1,021 in 2009 to 842 in 2018. The 30-day case fatality rate (CFR) decreased significantly from 16.0% in 2009 to 7.6% in 2018. The three most common presenting symptoms of AMI were chest pain, breathlessness and diaphoresis consistently across the years. While about half of the patients had chest pain (52.8%) and breathlessness (51.0%) accompanying onset of AMI in 2018, about a quarter of them (23.0%) had diaphoresis. The proportions of patients with chest pain and diaphoresis dropped gradually over the years, while the proportion with breathlessness remained stable. Hypertension and hyperlipidemia were the two most common risk factors among AMI patients consistently across the years. 74.8% of the patients had hypertension and 72.7% had hyperlipidemia in 2018. The proportions of patients with hypertension and hyperlipidemia rose slightly over the years. The median door-to-balloon (DTB) time improved from 69 minutes in 2009 to 51 minutes in 2018. The proportion of ST-segment elevation myocardial infarction (STEMI) patients with DTB time of 90 minutes or less improved from 74.7% in 2009 to 95.2% in 2018. The median DTB time was consistently shorter for STEMI patients who utilised the Singapore Civil Defence Force (SCDF) ambulance (45 minutes in 2018) than those who relied on other modes of transport (61 minutes in 2018) across the years. The proportion of STEMI patients with DTB time of 90 minutes or less was consistently higher among those who arrived at the hospital via the SCDF ambulance (97.6% in 2018) than those who arrived via other modes of transport (92.1% in 2018) across the years. ## 3. INTRODUCTION Ischaemic heart disease was the third most common cause of death in 2018, accounting for 18.1% of all deaths in Singapore¹. AMI, commonly known as heart attack, is a type of ischaemic heart disease. The most common cause of AMI is atherosclerosis - narrowing of arteries due to the build-up of cholesterol deposits. AMI occurs when blood flow to the heart is restricted, resulting in a poor supply of oxygen to the heart. Restoring blood flow to the heart through revascularisation of the blocked arteries, coupled with pharmacotherapy, are the recommended treatment for AMI. There are two main types of AMI - STEMI and NSTEMI. STEMI is more severe, while NSTEMI is more prevalent. Singapore's population is rapidly ageing. The old-age support ratio dropped from 7.5 people aged 20 to 64 years per person aged 65 years and above in 2009 to 4.8 in 2018². Common risk factors of AMI are hypertension, hyperlipidemia, diabetes, obesity, smoking and old age. With a rapidly ageing population, we can expect the incidence of AMI to rise. In order to mitigate the impact of AMI, preventive measures that reduce cardiovascular risk, as well as post-AMI interventions that improve prognosis and reduce recurrence risk, are essential. ¹ Principal Causes of Death. Ministry of Health, Singapore. ²
SingStat Population Trends. Department of Statistics, Singapore. ## 4. METHODOLOGY The National Registry of Diseases Office (NRDO) collects and analyses epidemiological data to support policy planning and programme evaluation. The Acute Myocardial Infarction Registry was established in 1988 and managed by the Ministry of Health (MOH). It was subsequently transferred to the Singapore Cardiac Databank in 2002. In April 2007, the NRDO, under the purview of Health Promotion Board, took over the management of the Registry, which was re-named to Singapore Myocardial Infarction Registry (SMIR). The SMIR collects epidemiological data on AMI cases diagnosed in all public hospitals, private hospitals and a small number of AMI deaths that occurred at home, which are certified by the general practitioners in Singapore. Legislation mandated notification from all healthcare institutions since September 2012. #### Data sources The SMIR receives AMI case notifications from - 1. All healthcare institutions via the Hospital In-patient Discharge Summary and the cardiac biomarkers list, - 2. MOH via the Mediclaims list and Casemix & Subvention list, and - 3. Death Registry of the Ministry of Home Affairs (MHA) via the death list. The International Classification of Diseases 9th Revision (ICD-9) Clinical Modification code 410 was used to identify AMI cases in the data sources prior to 2012, while the ICD-10 Australian Modification codes I21 and I22 were used for AMI cases diagnosed from 2012 onwards. A master patient list was created by merging data from these sources using the patients' unique National Registration Identification Card (NRIC) number. The registry coordinators confirmed the diagnosis of AMI by viewing the patients' medical records, before extracting relevant detailed clinical information from the medical records at the healthcare institutions. All cases collected by the SMIR were diagnosed as AMI by a certified doctor, accompanied by symptoms of AMI, raised cardiac biomarkers or abnormal electrocardiogram (ECG). The MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) criterion was used for episode management, whereby a recurring AMI after 28 days of a preceding episode will be counted as another episode³. The death status of all patients registered in the SMIR were updated till 31 July 2019 by matching the patients' NRIC number with the death information from the MHA. ³ Tunstall-Pedoe H et al. Myocardial infarction and coronary deaths in the World Health Organisation MONICA project. Circulation 1994; 90: 583-612. #### Population estimate The Singapore population estimates used to calculate the incidence rates and mortality rates in this report were obtained from the Singapore Department of Statistics, which releases mid-year population estimates of Singapore residents (i.e. Singapore citizens and permanent residents) annually⁴. The Segi World population estimates used for age standardisation are available on the World Health Organisation website⁵. #### Incidence rate The incidence rate in each year was calculated by taking the number of AMI episodes that occurred in a year, divided by the number of Singapore residents in the same year. The count was based on the onset date of each AMI episode. Patients were categorised into 5-year age groups and age standardisation was done using the direct method with the Segi World population as the standardisation weights. #### Mortality rate The mortality rate in each year was calculated by taking the number of deaths with AMI as the primary cause of death occurring in a year, divided by the number of Singapore residents in the same year. The count was based on the death date of each AMI patient. Patients were categorised into 5-year age groups and age standardisation was done using the direct method with the Segi World population as the standardisation weights. ### Case fatality rate The case fatality rate in each year was calculated by taking the number of deaths with AMI as the primary cause of death that occurred within 30 days from onset of AMI, regardless of whether the death occurred within or outside hospital in a year, divided by the number of AMI episodes in the same year. The count was based on the onset date of each AMI episode. This indicator reflects the severity of AMI, the timeliness of healthcare delivery and the effectiveness of AMI treatment. This report focuses on Singapore residents, aged 15 years and above, diagnosed with AMI in the past decade, from 2009 to 2018 as they stood on 4 October 2019. All findings in this report, except mortality and case fatality, were based on episodes. ⁵ Omar BA et al. Age standardization of rates: a new WHO standard. GPE discussion paper series: no. 31. EIP.GPE/EBD World Health Organization 2001. ⁴ SingStat Table Builder, Population and Population Structure, Annual Population, Singapore Residents by age group, ethnic group and sex. Department of Statistics, Singapore. ## 5. FINDINGS ## 5.1 Incidence The number of AMI episodes increased from 6,796 episodes in 2009 to 11,887 episodes in 2018 (Table 5.1.1). Similarly, the crude incidence rate (CIR) increased significantly from 221.6 per 100,000 population in 2009 to 349.3 per 100,000 population in 2018 (p<0.001) (Figure 5.1.1). Taking into account Singapore's ageing population, the ASIR also increased significantly from 189.4 per 100,000 population in 2009 to 225.8 per 100,000 population in 2018 (p=0.002). Table 5.1.1: Incidence number and rate of AMI (per 100,000 population) | Year of onset | Number | CIR | 95% CI | ASIR | 95% CI | |---------------|--------|--------|-------------|-------|-------------| | 2009 | 6796 | 221.6 | 216.4-226.9 | 189.4 | 184.9-194.0 | | 2010 | 7344 | 235.6 | 230.2-241.0 | 194.5 | 190.0-199.1 | | 2011 | 8014 | 254.2 | 248.7-259.8 | 204.7 | 200.1-209.3 | | 2012 | 9122 | 285.8 | 280.0-291.7 | 223.2 | 218.6-227.9 | | 2013 | 9531 | 295.2 | 289.2-301.1 | 222.8 | 218.2-227.3 | | 2014 | 9833 | 301.4 | 295.4-307.3 | 219.3 | 214.9-223.7 | | 2015 | 10131 | 307.0 | 301.0-313.0 | 217.2 | 212.8-221.5 | | 2016 | 10813 | 324.0 | 317.9-330.1 | 222.5 | 218.2-226.8 | | 2017 | 11948 | 354.4 | 348.0-360.8 | 235.0 | 230.7-239.3 | | 2018 | 11887 | 349.3 | 343.0-355.6 | 225.8 | 221.7-230.0 | | P for trend | - | <0.001 | - | 0.002 | - | Figure 5.1.1: Incidence rate of AMI (per 100,000 population) The median age at onset of AMI ranged from 68.3 to 70.1 years in the past decade (Table 5.1.2). About 3 in 4 of the patients were aged 60 years and above in 2018 (Figure 5.1.2). Table 5.1.2: Age distribution at onset of AMI | Table 5.1.2. A | | | | | | 00 | A 10 | 40 | |----------------|-----------|------|--------|------|--------|------|--------|------| | Year of onset | Overa | | Age 15 | | Age 30 | | Age 40 | | | Todi oi oiiset | Median | age | Number | % | Number | % | Number | % | | 2009 | 68.3 | } | 13 | 0.2 | 112 | 1.6 | 649 | 9.5 | | 2010 | 68.9 |) | 12 | 0.2 | 118 | 1.6 | 676 | 9.2 | | 2011 | 69.1 | | 13 | 0.2 | 126 | 1.6 | 709 | 8.8 | | 2012 | 68.5 |) | 15 | 0.2 | 139 | 1.5 | 725 | 7.9 | | 2013 | 69.2 | | 13 | 0.1 | 139 | 1.5 | 765 | 8.0 | | 2014 | 68.8 | } | 11 | 0.1 | 126 | 1.3 | 768 | 7.8 | | 2015 | 68.8 | } | 13 | 0.1 | 148 | 1.5 | 742 | 7.3 | | 2016 | 69.0 |) | 16 | 0.1 | 154 | 1.4 | 727 | 6.7 | | 2017 | 70.1 | | 16 | 0.1 | 162 | 1.4 | 700 | 5.9 | | 2018 | 69.9 |) | 15 | 0.1 | 132 | 1.1 | 762 | 6.4 | | Voor of open | Age 50-59 | | Age 60 | -69 | Age 70 | -79 | Age 8 | 0+ | | Year of onset | Number | % | Number | % | Number | % | Number | % | | 2009 | 1410 | 20.7 | 1508 | 22.2 | 1735 | 25.5 | 1369 | 20.1 | | 2010 | 1563 | 21.3 | 1484 | 20.2 | 1826 | 24.9 | 1665 | 22.7 | | 2011 | 1536 | 19.2 | 1784 | 22.3 | 2016 | 25.2 | 1830 | 22.8 | | 2012 | 1817 | 19.9 | 2107 | 23.1 | 2213 | 24.3 | 2106 | 23.1 | | 2013 | 1859 | 19.5 | 2145 | 22.5 | 2241 | 23.5 | 2369 | 24.9 | | 2014 | 1972 | 20.1 | 2240 | 22.8 | 2297 | 23.4 | 2419 | 24.6 | | 2015 | 1922 | 19.0 | 2489 | 24.6 | 2189 | 21.6 | 2628 | 25.9 | | 2016 | 2004 | 18.5 | 2814 | 26.0 | 2284 | 21.1 | 2814 | 26.0 | | 2017 | 2116 | 17.7 | 2963 | 24.8 | 2767 | 23.2 | 3224 | 27.0 | | 2018 | 2031 | 17.1 | 3019 | 25.4 | 2736 | 23.0 | 3192 | 26.9 | Figure 5.1.2: Age distribution at onset of AMI The age-specific incidence rate increased with age, with the oldest age group having the highest incidence rate (Figure 5.1.3a). Over the past decade, significant rise in incidence rates were observed for all age groups between 30 to 69 years, as well as those aged 80 years and above (Table 5.1.3). The rise in incidence rate was fastest among those aged 80 years and above (Figure 5.1.3b). Table 5.1.3: Age-specific incidence rate of AMI (per 100,000 population) | Voca of caset | C | Overall | Ag | e 15-29 | Ag | je 30-39 | Ag | je 40-49 | |---------------|-----------|-------------|-------|-------------|--------|---------------|--------|---------------| | Year of onset | CIR | 95% CI | | 2009 | 221.6 | 216.4-226.9 | 1.7 | 0.8-2.6 | 18.2 | 14.8-21.6 | 102.1 | 94.3-110.0 | | 2010 | 235.6 | 230.2-241.0 | 1.5 | 0.7-2.4 | 19.1 | 15.6-22.5 | 106.8 | 98.7-114.8 | | 2011 | 254.2 | 248.7-259.8 | 1.7 | 0.8-2.6 | 20.5 | 16.9-24.1 | 112.4 | 104.2-120.7 | | 2012 | 285.8 | 280.0-291.7 | 1.9 | 1.0-2.9 | 22.8 | 19.0-26.6 | 115.1 | 106.8-123.5 | | 2013 | 295.2 | 289.2-301.1 | 1.7 | 0.8-2.6 | 23.1 | 19.2-26.9 | 121.7 | 113.0-130.3 | | 2014 | 301.4 | 295.4-307.3 | 1.4 | 0.6-2.3 | 21.2 | 17.5-24.9 | 123.0 | 114.3-131.7 | | 2015 | 307.0 | 301.0-313.0 | 1.7 | 0.8-2.6 | 25.0 | 21.0-29.0 | 119.6 | 111.0-128.3 | | 2016 | 324.0 | 317.9-330.1 | 2.0 | 1.0-3.1 | 26.2 | 22.1-30.4 | 118.3 | 109.7-126.9 | | 2017 | 354.4 | 348.0-360.8 | 2.0 | 1.0-3.0 | 27.9 | 23.6-32.2 | 113.8 | 105.4-122.3 | | 2018 | 349.3 | 343.0-355.6 | 1.9 | 1.0-2.9 | 22.6 | 18.7-26.4 | 124.6 | 115.8-133.5 | | P for trend | <0.001 | - | 0.130 | - | 0.004 | - | 0.012 | - | | Year of onset | Age 50-59 | | Ag | e 60-69 | Ag | je 70-79 | Α | ge 80+ | | rear or onset | CIR | 95% CI | | 2009 |
262.4 | 248.7-276.1 | 527.5 | 500.8-554.1 | 1164.4 | 1109.6-1219.2 | 2109.4 | 1997.7-2221.1 | | 2010 | 283.3 | 269.2-297.3 | 489.4 | 464.5-514.3 | 1157.9 | 1104.8-1211.0 | 2406.1 | 2290.5-2521.6 | | 2011 | 270.1 | 256.6-283.6 | 556.6 | 530.8-582.5 | 1207.9 | 1155.2-1260.6 | 2500.0 | 2385.5-2614.5 | | 2012 | 312.1 | 297.7-326.4 | 614.6 | 588.4-640.9 | 1286.6 | 1233.0-1340.2 | 2713.9 | 2598.0-2829.8 | | 2013 | 313.0 | 298.8-327.2 | 582.7 | 558.1-607.4 | 1272.6 | 1219.9-1325.3 | 2885.5 | 2769.3-3001.7 | | 2014 | 326.5 | 312.1-341.0 | 570.4 | 546.8-594.0 | 1254.4 | 1203.1-1305.7 | 2771.1 | 2660.7-2881.5 | | 2015 | 315.0 | 300.9-329.1 | 588.5 | 565.4-611.7 | 1190.7 | 1140.8-1240.6 | 2812.3 | 2704.7-2919.8 | | 2016 | 325.8 | 311.5-340.0 | 625.5 | 602.4-648.6 | 1191.1 | 1142.3-1240.0 | 2877.3 | 2771.0-2983.6 | | 2017 | 344.3 | 329.7-359.0 | 635.0 | 612.1-657.9 | 1308.6 | 1259.8-1357.4 | 3183.4 | 3073.5-3293.3 | | 2018 | 331.1 | 316.7-345.5 | 624.0 | 601.8-646.3 | 1195.4 | 1150.6-1240.2 | 2986.5 | 2882.9-3090.1 | | P for trend | <0.001 | - | 0.003 | - | 0.353 | - | <0.001 | - | Figure 5.1.3a: Age-specific incidence rate of AMI (per 100,000 population) across age groups Figure 5.1.3b: Age-specific incidence rate of AMI (per 100,000 population) across years Although the gender distribution was almost equal in the general population, there were more males suffering from AMI than females (Table 5.1.4). The ASIR for males was consistently higher than females across the years (Figure 5.1.4). Males had an ASIR of 337.1 per 100,000 population, while females had an ASIR of 124.2 per 100,000 population in 2018. The rise in ASIR over the years was significant for males (p<0.001) but not for females (p=0.095). Males were known to have higher risk of AMI compared to females. The underlying causes were multifactorial and related to the pathophysiological gender differences in AMI⁶. Furthermore, the prevalence of hypertension, hyperlipidemia, diabetes and smoking were higher among males than females in the general population as shown in the National Population Health Survey 2017⁷. Table 5.1.4: Incidence number and rate of AMI (per 100,000 population) by gender | | | | Male | | | | |---------------|--------|------|--------|-------------|--------|-------------| | Year of onset | Number | % | CIR | 95% CI | ASIR | 95% CI | | 2009 | 4464 | 65.7 | 297.1 | 288.4-305.8 | 268.8 | 260.8-276.8 | | 2010 | 4799 | 65.3 | 314.3 | 305.4-323.2 | 278.3 | 270.3-286.3 | | 2011 | 5305 | 66.2 | 343.9 | 334.6-353.1 | 295.8 | 287.7-303.9 | | 2012 | 5975 | 65.5 | 383.0 | 373.3-392.7 | 320.7 | 312.5-328.9 | | 2013 | 6105 | 64.1 | 387.1 | 377.4-396.8 | 314.8 | 306.9-322.8 | | 2014 | 6389 | 65.0 | 401.2 | 391.4-411.1 | 315.3 | 307.5-323.1 | | 2015 | 6580 | 64.9 | 408.8 | 398.9-418.7 | 312.7 | 305.0-320.3 | | 2016 | 7104 | 65.7 | 436.9 | 426.8-447.1 | 324.2 | 316.6-331.9 | | 2017 | 7889 | 66.0 | 480.9 | 470.2-491.5 | 346.5 | 338.8-354.2 | | 2018 | 7936 | 66.8 | 479.7 | 469.2-490.3 | 337.1 | 329.6-344.6 | | P for trend | - | - | <0.001 | - | <0.001 | - | | | | | Female | | | | | Year of onset | Number | % | CIR | 95% CI | ASIR | 95% CI | | 2009 | 2332 | 34.3 | 149.2 | 143.1-155.2 | 114.5 | 109.7-119.3 | | 2010 | 2545 | 34.7 | 160.0 | 153.8-166.2 | 117.2 | 112.5-122.0 | | 2011 | 2709 | 33.8 | 168.3 | 162.0-174.6 | 120.7 | 116.0-125.5 | | 2012 | 3147 | 34.5 | 192.9 | 186.2-199.7 | 133.6 | 128.8-138.5 | | 2013 | 3426 | 35.9 | 207.4 | 200.4-214.3 | 136.2 | 131.5-140.9 | | 2014 | 3444 | 35.0 | 206.2 | 199.3-213.1 | 130.1 | 125.6-134.6 | | 2015 | 3551 | 35.1 | 210.0 | 203.1-216.9 | 127.7 | 123.3-132.1 | | 2016 | 3709 | 34.3 | 216.7 | 209.7-223.7 | 128.6 | 124.3-132.9 | | 2017 | 4059 | 34.0 | 234.5 | 227.3-241.7 | 133.3 | 129.0-137.5 | | 2018 | 3951 | 33.2 | 225.9 | 218.9-233.0 | 124.2 | 120.2-128.3 | | P for trend | - | - | <0.001 | - | 0.095 | - | ⁶ Mehta LS et al. Acute myocardial infarction in women. Circulation 2016; 133. ⁷ National Population Health Survey 2017. Ministry of Health, Singapore. Figure 5.1.4: Incidence rate of AMI (per 100,000 population) by gender The median age at onset of AMI among males increased from 62.6 years in 2009 to 66.6 years in 2018 (Table 5.1.5a). The highest proportion of AMI episodes was found among males aged 60-69 years (28.4%) in 2018 (Figure 5.1.5a). Table 5.1.5a: Age distribution at onset of AMI among males | Year of onset | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | |----------------|-----------|------|--------|------|-----------|------|--------|------| | real of offset | Median | age | Number | % | Number | % | Number | % | | 2009 | 62.6 | ; | 10 | 0.2 | 105 | 2.4 | 573 | 12.8 | | 2010 | 63.2 | | 9 | 0.2 | 105 | 2.2 | 584 | 12.2 | | 2011 | 63.9 | | 12 | 0.2 | 116 | 2.2 | 627 | 11.8 | | 2012 | 64.3 | } | 11 | 0.2 | 120 | 2.0 | 632 | 10.6 | | 2013 | 64.4 | | 10 | 0.2 | 121 | 2.0 | 661 | 10.8 | | 2014 | 64.7 | • | 10 | 0.2 | 110 | 1.7 | 664 | 10.4 | | 2015 | 65.1 | | 8 | 0.1 | 126 | 1.9 | 637 | 9.7 | | 2016 | 65.6 | ; | 11 | 0.2 | 133 | 1.9 | 613 | 8.6 | | 2017 | 66.6 | ; | 14 | 0.2 | 134 | 1.7 | 607 | 7.7 | | 2018 | 66.6 | ; | 12 | 0.2 | 112 | 1.4 | 657 | 8.3 | | Year of onset | Age 50-59 | | Age 60 | -69 | Age 70-79 | | Age 8 | 0+ | | Teal Of Offset | Number | % | Number | % | Number | % | Number | % | | 2009 | 1188 | 26.6 | 1060 | 23.7 | 976 | 21.9 | 552 | 12.4 | | 2010 | 1293 | 26.9 | 1074 | 22.4 | 1025 | 21.4 | 709 | 14.8 | | 2011 | 1306 | 24.6 | 1273 | 24.0 | 1174 | 22.1 | 797 | 15.0 | | 2012 | 1490 | 24.9 | 1500 | 25.1 | 1286 | 21.5 | 936 | 15.7 | | 2013 | 1534 | 25.1 | 1546 | 25.3 | 1277 | 20.9 | 956 | 15.7 | | 2014 | 1599 | 25.0 | 1631 | 25.5 | 1342 | 21.0 | 1033 | 16.2 | | 2015 | 1575 | 23.9 | 1834 | 27.9 | 1298 | 19.7 | 1102 | 16.7 | | 2016 | 1675 | 23.6 | 2036 | 28.7 | 1365 | 19.2 | 1271 | 17.9 | | 2017 | 1740 | 22.1 | 2181 | 27.6 | 1715 | 21.7 | 1498 | 19.0 | | 2018 | 1680 | 21.2 | 2256 | 28.4 | 1710 | 21.5 | 1509 | 19.0 | Figure 5.1.5a: Age distribution at onset of AMI among males The median age at onset of AMI among females ranged from 75.9 to 77.9 years in the past decade (Table 5.1.5b), about 10 years older than the median age at onset among males (Table 5.1.5a). The highest proportion of AMI episodes was found among females aged 80 years and above (42.6%) in 2018 (Figure 5.1.5b). Table 5.1.5b: Age distribution at onset of AMI among females | | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | |--|---|---|---|---|---|---|--|---| | Year of onset | Median | | Number | % | Number | % | Number | % | | 2009 | 75.9 | | 3 | 0.1 | 7 | 0.3 | 76 | 3.3 | | 2010 | 76.1 | | 3 | 0.1 | 13 | 0.5 | 92 | 3.6 | | 2011 | 76.3 | | 1 | 0.0 | 10 | 0.4 | 82 | 3.0 | | 2012 | 75.9 |) | 4 | 0.1 | 19 | 0.6 | 93 | 3.0 | | 2013 | 77.4 | | 3 | 0.1 | 18 | 0.5 | 104 | 3.0 | | 2014 | 76.9 | | 1 | 0.0 | 16 | 0.5 | 104 | 3.0 | | 2015 | 77.4 | | 5 | 0.1 | 22 | 0.6 | 105 | 3.0 | | 2016 | 77.3 | } | 5 | 0.1 | 21 | 0.6 | 114 | 3.1 | | 2017 | 77.8 | } | 2 | 0.0 | 28 | 0.7 | 93 | 2.3 | | 2018 | 77.9 |) | 3 | 0.1 | 20 | 0.5 | 105 | 2.7 | | | Age 50-59 | | Age 60 | -60 | Age 70 | -70 | Age 8 | Λ. | | Voar of opent | Age 30 | -39 | Age ou | -09 | Age 10 | -19 | Age of | UŦ | | Year of onset | Number | - 59 | Number | -0 <i>9</i> | Number | % | Number | % | | Year of onset 2009 | | | | | | | | | | | Number | % | Number | % | Number | % | Number | % | | 2009 | Number
222 | %
9.5 | Number
448 | % 19.2 | Number
759 | % 32.5 | Number
817 | % 35.0 | | 2009
2010 | 222
270 | %
9.5
10.6 | Number
448
410 | %
19.2
16.1 | 759
801 | %
32.5
31.5 | Number
817
956 | %
35.0
37.6 | | 2009
2010
2011 | 222
270
230 | 9.5
10.6
8.5 | 448
410
511 | %
19.2
16.1
18.9 | 759
801
842 | %
32.5
31.5
31.1 | 817
956
1033 | %
35.0
37.6
38.1 | | 2009
2010
2011
2012 | 222
270
230
327 | 9.5
10.6
8.5
10.4 | 448
410
511
607 | %
19.2
16.1
18.9
19.3 | 759
801
842
927 | %
32.5
31.5
31.1
29.5 | 817
956
1033
1170 | %
35.0
37.6
38.1
37.2 | | 2009
2010
2011
2012
2013 | 222
270
230
327
325 | 9.5
10.6
8.5
10.4
9.5 | 448
410
511
607
599 | %
19.2
16.1
18.9
19.3
17.5 | 759
801
842
927
964 | %
32.5
31.5
31.1
29.5
28.1 | 817
956
1033
1170
1413 | %
35.0
37.6
38.1
37.2
41.2 | | 2009
2010
2011
2012
2013
2014 | 222
270
230
327
325
373 | %
9.5
10.6
8.5
10.4
9.5
10.8 | 448
410
511
607
599
609 | %
19.2
16.1
18.9
19.3
17.5
17.7 | 759
801
842
927
964
955 | %
32.5
31.5
31.1
29.5
28.1
27.7
25.1
24.8 | 817
956
1033
1170
1413
1386 | %
35.0
37.6
38.1
37.2
41.2
40.2 | | 2009
2010
2011
2012
2013
2014
2015 | 222
270
230
327
325
373
347 | %
9.5
10.6
8.5
10.4
9.5
10.8
9.8 | 448
410
511
607
599
609
655 | %
19.2
16.1
18.9
19.3
17.5
17.7 | 759
801
842
927
964
955
891 | %
32.5
31.5
31.1
29.5
28.1
27.7
25.1 | 817
956
1033
1170
1413
1386
1526 | %
35.0
37.6
38.1
37.2
41.2
40.2
43.0 | Figure 5.1.5b: Age distribution at onset of AMI among females Although the ethnic
distribution of the AMI patients was similar to the ethnic distribution of the general population (Table 5.1.6), Chinese consistently had the lowest across the years (Figure 5.1.6). The ASIRs were 180.7, 442.6 and 429.2 per 100,000 population for Chinese, Malays and Indians respectively in 2018. The rise in ASIR over the years was significant for all the three ethnic groups (Chinese: p=0.001, Malays: p=0.013, Indians: p=0.020). The prevalence of hypertension, high low-density lipoprotein cholesterol, obesity and smoking were higher among Malays, relative to Chinese and Indians in the general population as shown by the National Health Survey 2010⁸. Although the prevalence of hypertension among Indians were lower than Chinese, the prevalence of diabetes among Indians was higher than Chinese. Furthermore, Indians have ethnic-specific risk for coronary artery disease⁹. The high prevalence of AMI risk factors among Malays and the combination of AMI risk factors in the backdrop of genetic predisposition to coronary artery disease among Indians were likely the reasons for their higher ASIR, relative to Chinese. ⁸ National Health Survey 2010. Ministry of Health, Singapore. ⁹ Zheng H et al. Ethnic differences and trends in ST-segment elevation myocardial infarction incidence and mortality in a multi-ethnic population. Annuals Academy of Medicine Singapore. 2019; 48: 75-85. Table 5.1.6: Incidence number and rate (per 100,000 population) of AMI by ethnicity | Ctilinoity | | | Chines | se . | | | |---------------|--------|------|--------|-------------|-------|-------------| | Year of onset | Number | % | CIR | 95% CI | ASIR | 95% CI | | 2009 | 4453 | 65.5 | 191.8 | 186.2-197.4 | 151.5 | 147.0-156.0 | | 2010 | 4906 | 66.8 | 208.3 | 202.4-214.1 | 158.2 | 153.7-162.7 | | 2011 | 5296 | 66.1 | 222.4 | 216.4-228.4 | 163.4 | 158.9-167.9 | | 2012 | 5981 | 65.6 | 248.0 | 241.8-254.3 | 176.9 | 172.3-181.5 | | 2013 | 6308 | 66.2 | 258.6 | 252.2-265.0 | 177.5 | 173.0-181.9 | | 2014 | 6520 | 66.3 | 264.6 | 258.2-271.0 | 175.0 | 170.7-179.3 | | 2015 | 6801 | 67.1 | 272.8 | 266.3-279.3 | 175.0 | 170.8-179.3 | | 2016 | 7118 | 65.8 | 282.4 | 275.8-289.0 | 175.6 | 171.4-179.8 | | 2017 | 8036 | 67.3 | 315.7 | 308.8-322.6 | 188.5 | 184.3-192.8 | | 2018 | 7983 | 67.2 | 310.7 | 303.9-317.5 | 180.7 | 176.6-184.8 | | P for trend | - | - | <0.001 | - | 0.001 | - | | | | | Malay | 1 | | | | Year of onset | Number | % | CIR | 95% CI | ASIR | 95% CI | | 2009 | 1316 | 19.4 | 342.6 | 324.1-361.1 | 364.6 | 344.2-384.9 | | 2010 | 1415 | 19.3 | 361.4 | 342.8-380.5 | 373.8 | 353.5-394.0 | | 2011 | 1569 | 19.6 | 395.1 | 375.6-414.7 | 410.6 | 389.5-431.7 | | 2012 | 1843 | 20.2 | 457.3 | 436.4-478.2 | 456.3 | 434.9-477.7 | | 2013 | 1889 | 19.8 | 462.1 | 441.2-482.9 | 449.3 | 428.6-470.0 | | 2014 | 1855 | 18.9 | 447.5 | 427.1-467.9 | 417.9 | 398.5-437.3 | | 2015 | 1964 | 19.4 | 467.5 | 446.8-488.2 | 426.2 | 407.0-445.5 | | 2016 | 2147 | 19.9 | 504.2 | 482.9-525.5 | 448.2 | 428.9-467.6 | | 2017 | 2255 | 18.9 | 523.4 | 501.8-545.0 | 456.1 | 437.0-475.2 | | 2018 | 2269 | 19.1 | 521.3 | 499.8-542.7 | 442.6 | 424.2-461.0 | | P for trend | - | - | <0.001 | - | 0.013 | - | | | | 1 | Indiar | | | | | Year of onset | Number | % | CIR | 95% CI | ASIR | 95% CI | | 2009 | 935 | 13.8 | 348.8 | 326.4-371.1 | 386.0 | 360.4-411.5 | | 2010 | 934 | 12.7 | 342.0 | 320.1-363.9 | 372.1 | 347.5-396.7 | | 2011 | 1062 | 13.3 | 385.1 | 361.9-408.2 | 414.0 | 388.2-439.7 | | 2012 | 1164 | 12.8 | 417.4 | 393.4-441.3 | 432.5 | 407.0-458.0 | | 2013 | 1182 | 12.4 | 420.3 | 396.4-444.3 | 420.1 | 395.6-444.5 | | 2014 | 1259 | 12.8 | 443.6 | 419.1-468.1 | 425.8 | 401.9-449.7 | | 2015 | 1232 | 12.2 | 430.7 | 406.6-454.7 | 397.6 | 375.1-420.2 | | 2016 | 1399 | 12.9 | 485.0 | 459.6-510.4 | 436.4 | 413.2-459.6 | | 2017 | 1496 | 12.5 | 513.6 | 487.5-539.6 | 449.2 | 426.3-472.2 | | 2018 | 1498 | 12.6 | 509.4 | 483.6-535.2 | 429.2 | 407.4-451.0 | | P for trend | - | - | <0.001 | - | 0.020 | - | Figure 5.1.6: Incidence rate of AMI (per 100,000 population) by ethnicity Chinese had the oldest median age at onset of AMI, which ranged from 70.0 to 73.3 years in the past decade (Table 5.1.7a). The highest proportion of AMI episodes was found among Chinese aged 80 years and above (31.8%) in 2018 (Figure 5.1.7a). Table 5.1.7a: Age distribution at onset of AMI among Chinese | | | | 1 1500 1 0000 1 1010 | | | | | | | |----------------|-----------|------------|----------------------|------|--------|------|--------|------|--| | Year of onset | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | | | Teal of offset | Median | Median age | | % | Number | % | Number | % | | | 2009 | 70.0 |) | 8 | 0.2 | 53 | 1.2 | 320 | 7.2 | | | 2010 | 71.1 | 71.1 | | 0.1 | 67 | 1.4 | 346 | 7.1 | | | 2011 | 71.5 | | 5 | 0.1 | 55 | 1.0 | 337 | 6.4 | | | 2012 | 71.7 | • | 10 | 0.2 | 66 | 1.1 | 392 | 6.6 | | | 2013 | 72.6 | ; | 8 | 0.1 | 75 | 1.2 | 381 | 6.0 | | | 2014 | 72.5 |) | 6 | 0.1 | 59 | 0.9 | 389 | 6.0 | | | 2015 | 72.3 | } | 9 | 0.1 | 66 | 1.0 | 353 | 5.2 | | | 2016 | 72.0 |) | 4 | 0.1 | 80 | 1.1 | 344 | 4.8 | | | 2017 | 73.3 | } | 6 | 0.1 | 80 | 1.0 | 372 | 4.6 | | | 2018 | 72.6 | ; | 6 | 0.1 | 61 | 8.0 | 390 | 4.9 | | | Voor of anost | Age 50-59 | | Age 60 | -69 | Age 70 | -79 | Age 8 | 0+ | | | Year of onset | Number | % | Number | % | Number | % | Number | % | | | 2009 | 833 | 18.7 | 1005 | 22.6 | 1184 | 26.6 | 1050 | 23.6 | | | 2010 | 887 | 18.1 | 994 | 20.3 | 1319 | 26.9 | 1290 | 26.3 | | | 2011 | 894 | 16.9 | 1123 | 21.2 | 1454 | 27.5 | 1428 | 27.0 | | | 2012 | 960 | 16.1 | 1308 | 21.9 | 1568 | 26.2 | 1677 | 28.0 | | | 2013 | 1002 | 15.9 | 1334 | 21.1 | 1610 | 25.5 | 1898 | 30.1 | | | 2014 | 1072 | 16.4 | 1398 | 21.4 | 1674 | 25.7 | 1922 | 29.5 | | | 2015 | 1066 | 15.7 | 1590 | 23.4 | 1619 | 23.8 | 2098 | 30.8 | | | 2016 | 1079 | 15.2 | 1750 | 24.6 | 1662 | 23.3 | 2199 | 30.9 | | | 2017 | 1110 | 13.8 | 1835 | 22.8 | 2010 | 25.0 | 2623 | 32.6 | | | 2018 | 1079 | 13.5 | 1882 | 23.6 | 2026 | 25.4 | 2539 | 31.8 | | Figure 5.1.7a: Age distribution at onset of AMI among Chinese The median age at onset of AMI among Malays ranged from 63.3 to 64.7 years in the past decade (Table 5.1.7b). The highest proportion of AMI episodes was found among Malays aged 60-69 years (29.0%) in 2018 (Figure 5.1.7b). Table 5.1.7b: Age distribution at onset of AMI among Malays | Voor of appet | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40-49 | | |----------------|--------|------------|-----------|------|--------|------|-----------|------| | Year of onset | Median | Median age | | % | Number | % | Number | % | | 2009 | 64.7 | , | 1 | 0.1 | 24 | 1.8 | 164 | 12.5 | | 2010 | 63.3 | | 6 | 0.4 | 26 | 1.8 | 179 | 12.7 | | 2011 | 64.3 | | 4 | 0.3 | 37 | 2.4 | 200 | 12.7 | | 2012 | 63.6 | ; | 3 | 0.2 | 32 | 1.7 | 187 | 10.1 | | 2013 | 64.0 |) | 3 | 0.2 | 32 | 1.7 | 214 | 11.3 | | 2014 | 63.6 |) | 3 | 0.2 | 28 | 1.5 | 206 | 11.1 | | 2015 | 63.4 | | 4 | 0.2 | 48 | 2.4 | 208 | 10.6 | | 2016 | 64.0 |) | 7 | 0.3 | 37 | 1.7 | 215 | 10.0 | | 2017 | 64.5 | , | 7 | 0.3 | 46 | 2.0 | 170 | 7.5 | | 2018 | 64.7 | • | 6 | 0.3 | 45 | 2.0 | 190 | 8.4 | | Year of onset | Age 50 | -59 | Age 60-69 | | Age 70 | -79 | Age 8 | 0+ | | Teal of offset | Number | % | Number | % | Number | % | Number | % | | 2009 | 316 | 24.0 | 292 | 22.2 | 351 | 26.7 | 168 | 12.8 | | 2010 | 394 | 27.8 | 294 | 20.8 | 311 | 22.0 | 205 | 14.5 | | 2011 | 351 | 22.4 | 393 | 25.0 | 349 | 22.2 | 235 | 15.0 | | 2012 | 496 | 26.9 | 486 | 26.4 | 407 | 22.1 | 232 | 12.6 | | 2013 | 503 | 26.6 | 493 | 26.1 | 387 | 20.5 | 257 | 13.6 | | 2014 | 516 | 27.8 | 486 | 26.2 | 362 | 19.5 | 254 | 13.7 | | 2015 | 507 | 25.8 | 524 | 26.7 | 359 | 18.3 | 314 | 16.0 | | 2016 | 549 | 25.6 | 622 | 29.0 | 369 | 17.2 | 348 | 16.2 | | 2017 | 599 | 26.6 | 654 | 29.0 | 449 | 19.9 | 330 | 14.6 | | 2018 | 562 | 24.8 | 659 | 29.0 | 451 | 19.9 | 356 | 15.7 | Figure 5.1.7b: Age distribution at onset of AMI among Malays The median age at onset of AMI among Indians increased from 61.1 years in 2009 to 64.2 years in 2018 (Table 5.1.7c). The highest proportion of AMI episodes was found among Indians aged 60-69 years (29.4%) in 2018 (Figure 5.1.7c). Table 5.1.7c: Age distribution at onset of AMI among Indians | | Overa | all | Age 15 | -29 | Age 30 | -30 | Age 40-49 | | |--|---|--|---|--|---|--|---|--| | Year of onset | Median | | Number | % | Number | % | Number | % | | 2009 | 61.1 | | 4 | 0.4 | 30 | 3.2 | 146 | 15.6 | | 2010 | 61.8 | | 2 | 0.2 | 24 | 2.6 | 140 | 15.0 | | 2011 | 62.2 | | 4 | 0.4 | 34 | 3.2 | 156 | 14.7 | | 2012 | 62.4 | | 2 | 0.2 | 38 | 3.3 | 135 | 11.6 | | 2013 | 62.2 | | 2 | 0.2 | 29 | 2.5 | 156 | 13.2 | | 2014 | 62.4 | | 2 | 0.2 | 36 | 2.9 | 154 | 12.2 | | 2015 | 62.5 | | 0 | 0.0 | 32 | 2.6 | 163 | 13.2 | | 2016 | 63.9 | | 5 | 0.4 | 33 | 2.4 | 155 | 11.1 | | 2017 | 64.3 | } | 2 | 0.1 | 32 | 2.1 | 143 | 9.6 | | 2018 | 64.2 | 64.2 | | 0.2 | 22 | 1.5 | 162 | 10.8 | | Voor of open | Age 50-59 | | Age 60 | -69 | Age 70 | -79 | Age 8 | +0 | | Year of onset | | | | | | | | | | | Number | % | Number | % | Number | % | Number | % | | 2009 | Number
245 | % 26.2 | Number
197 | % 21.1 | Number
183 | % 19.6 | Number
130 | % 13.9 | | 2009
2010 | | | | | | | | | | | 245 | 26.2
28.3
25.7 | 197
177
252 | 21.1
19.0
23.7 | 183 | 19.6
19.5
18.4 | 130 | 13.9 | | 2010 | 245
264 | 26.2
28.3 | 197
177 | 21.1
19.0 | 183
182 | 19.6
19.5 | 130
145 | 13.9
15.5 | | 2010
2011 | 245
264
273 |
26.2
28.3
25.7
27.6
26.8 | 197
177
252
286
287 | 21.1
19.0
23.7
24.6
24.3 | 183
182
195
216
210 | 19.6
19.5
18.4
18.6
17.8 | 130
145
148 | 13.9
15.5
13.9
14.3
15.3 | | 2010
2011
2012 | 245
264
273
321 | 26.2
28.3
25.7
27.6 | 197
177
252
286 | 21.1
19.0
23.7
24.6 | 183
182
195
216 | 19.6
19.5
18.4
18.6 | 130
145
148
166 | 13.9
15.5
13.9
14.3 | | 2010
2011
2012
2013 | 245
264
273
321
317 | 26.2
28.3
25.7
27.6
26.8 | 197
177
252
286
287 | 21.1
19.0
23.7
24.6
24.3 | 183
182
195
216
210 | 19.6
19.5
18.4
18.6
17.8 | 130
145
148
166
181 | 13.9
15.5
13.9
14.3
15.3 | | 2010
2011
2012
2013
2014 | 245
264
273
321
317
342 | 26.2
28.3
25.7
27.6
26.8
27.2 | 197
177
252
286
287
320 | 21.1
19.0
23.7
24.6
24.3
25.4 | 183
182
195
216
210
219 | 19.6
19.5
18.4
18.6
17.8 | 130
145
148
166
181
186 | 13.9
15.5
13.9
14.3
15.3
14.8 | | 2010
2011
2012
2013
2014
2015 | 245
264
273
321
317
342
318 | 26.2
28.3
25.7
27.6
26.8
27.2
25.8 | 197
177
252
286
287
320
349 | 21.1
19.0
23.7
24.6
24.3
25.4
28.3 | 183
182
195
216
210
219
192 | 19.6
19.5
18.4
18.6
17.8
17.4
15.6 | 130
145
148
166
181
186
178 | 13.9
15.5
13.9
14.3
15.3
14.8
14.4 | Figure 5.1.7c: Age distribution at onset of AMI among Indians There were more NSTEMI than STEMI episodes (Table 5.1.8) and the ASIR for NSTEMI was consistently higher than STEMI across the years (Figure 5.1.8). NSTEMI was more prevalent as it could occur on its own or as a complication in very sick patients. Critically ill patients had increased risk for NSTEMI as myocardial demand was higher in these patients¹⁰. The ASIR for STEMI decreased significantly from 57.9 per 100,000 population in 2009 to 54.7 per 100,000 population in 2018 (p=0.011), while the ASIR for NSTEMI increased significantly from 120.6 per 100,000 population in 2009 to 163.3 per 100,000 population in 2018 (p=0.001). - ¹⁰Jeremy B. Richards, Renee D. Stapleton. Non-pulmonary complications of critical care. A clinical guide. Respiratory Medicine. Table 5.1.8: Incidence number and rate of AMI (per 100,000 population) by subtype | | | | STEM | | | | |---------------|--------|------|---------|-------------|-------|-------------| | Year of onset | Number | % | CIR | 95% CI | ASIR | 95% CI | | 2009 | 2069 | 30.4 | 67.5 | 64.6-70.4 | 57.9 | 55.4-60.4 | | 2010 | 2099 | 28.6 | 67.3 | 64.5-70.2 | 56.5 | 54.0-59.0 | | 2011 | 2127 | 26.5 | 67.5 | 64.6-70.3 | 55.9 | 53.5-58.3 | | 2012 | 2275 | 24.9 | 71.3 | 68.4-74.2 | 57.3 | 54.9-59.7 | | 2013 | 2362 | 24.8 | 73.1 | 70.2-76.1 | 57.2 | 54.9-59.6 | | 2014 | 2344 | 23.8 | 71.8 | 68.9-74.7 | 55.1 | 52.8-57.4 | | 2015 | 2308 | 22.8 | 69.9 | 67.1-72.8 | 52.8 | 50.6-55.0 | | 2016 | 2406 | 22.3 | 72.1 | 69.2-75.0 | 53.9 | 51.7-56.1 | | 2017 | 2540 | 21.3 | 75.3 | 72.4-78.3 | 54.4 | 52.3-56.6 | | 2018 | 2602 | 21.9 | 76.5 | 73.5-79.4 | 54.7 | 52.6-56.9 | | P for trend | - | - | 0.001 | - | 0.011 | - | | | | | NSTEM | 11 | | | | Year of onset | Number | % | CIR | 95% CI | ASIR | 95% CI | | 2009 | 4330 | 63.7 | 141.2 | 137.0-145.4 | 120.6 | 117.0-124.3 | | 2010 | 4799 | 65.3 | 153.9 | 149.6-158.3 | 126.4 | 122.8-130.1 | | 2011 | 5251 | 65.5 | 166.6 | 162.1-171.1 | 132.7 | 129.0-136.4 | | 2012 | 6378 | 69.9 | 199.8 | 194.9-204.7 | 154.6 | 150.7-158.4 | | 2013 | 6730 | 70.6 | 208.4 | 203.4-213.4 | 155.6 | 151.8-159.3 | | 2014 | 7108 | 72.3 | 217.9 | 212.8-222.9 | 155.9 | 152.3-159.6 | | 2015 | 7481 | 73.8 | 226.7 | 221.5-231.8 | 157.3 | 153.6-160.9 | | 2016 | 7952 | 73.5 | 238.3 | 233.0-243.5 | 159.8 | 156.2-163.4 | | 2017 | 8958 | 75.0 | 265.7 | 260.2-271.2 | 172.3 | 168.7-176.0 | | 2018 | 8856 | 74.5 | 260.2 | 254.8-265.6 | 163.3 | 159.8-166.8 | | P for trend | | | < 0.001 | | 0.001 | 1 | Figure 5.1.8: Incidence rate of AMI (per 100,000 population) by subtype The median age at onset of STEMI increased from 59.9 years in 2009 to 62.1 years in 2018 (Table 5.1.9a). The highest proportion of STEMI episodes was found among patients aged 60-69 years (30.6%) in 2018 (Figure 5.1.9a). Table 5.1.9a: Age distribution at onset of STEMI | V 6 | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | |--|--|---|--|---|---|---|--|--| | Year of onset | Median | | Number | % | Number | % | Number | % | | 2009 | 59.9 |) | 7 | 0.3 | 69 | 3.3 | 346 | 16.7 | | 2010 | 59.7 | , | 9 | 0.4 | 62 | 3.0 | 348 | 16.6 | | 2011 | 60.1 | | 7 | 0.3 | 72 | 3.4 | 342 | 16.1 | | 2012 | 60.7 | , | 5 | 0.2 | 67 | 2.9 | 326 | 14.3 | | 2013 | 60.6 | | 5 | 0.2 | 76 | 3.2 | 329 | 13.9 | | 2014 | 60.1 | | 8 | 0.3 | 62 | 2.6 | 338 | 14.4 | | 2015 | 60.2 | <u> </u> | 3 | 0.1 | 74 | 3.2 | 340 | 14.7 | | 2016 | 60.7 | • | 9 | 0.4 | 71 | 3.0 | 312 | 13.0 | | 2017 | 62.0 |) | 7 | 0.3 | 52 | 2.0 | 299 | 11.8 | | 2018 | 62.1 | | 5 | 0.2 | 52 | 2.0 | 329 | 12.6 | | | | | Age 60-69 | | | | | | | Voor of opent | Age 50 | -59 | Age 60 | -69 | Age 70 | -79 | Age 8 | | | Year of onset | Age 50
Number | -59
% | Age 60
Number | -69
% | Age 70
Number | -79
% | Age 8 | | | Year of onset 2009 | | | | | | | | 0+ | | | Number | % | Number | % | Number | % | Number | 0+
% | | 2009 | Number
617 | % 29.8 | Number
461 | % 22.3 | Number
360 | % 17.4 | Number
209 | 0+
%
10.1 | | 2009
2010 | Number 617 643 | %
29.8
30.6 | Number
461
449 | %
22.3
21.4 | 360
342 | %
17.4
16.3 | Number
209
246 | 0+ | | 2009
2010
2011 | 617
643
635 | %
29.8
30.6
29.9 | 461
449
538 | %
22.3
21.4
25.3 | 360
342
311 | %
17.4
16.3
14.6 | 209
246
222 | 0+
%
10.1
11.7
10.4 | | 2009
2010
2011
2012 | 617
643
635
689 | %
29.8
30.6
29.9
30.3 | 461
449
538
559 | %
22.3
21.4
25.3
24.6 | 360
342
311
365 | %
17.4
16.3
14.6
16.0 | 209
246
222
264 | 0+
%
10.1
11.7
10.4
11.6 | | 2009
2010
2011
2012
2013 | 617
643
635
689
735 | %
29.8
30.6
29.9
30.3
31.1 | Number
461
449
538
559
554 | %
22.3
21.4
25.3
24.6
23.5 | 360
342
311
365
391 | %
17.4
16.3
14.6
16.0
16.6 | Number
209
246
222
264
272 | 0+
%
10.1
11.7
10.4
11.6
11.5 | | 2009
2010
2011
2012
2013
2014 | Number
617
643
635
689
735
760 | %
29.8
30.6
29.9
30.3
31.1
32.4 | Number
461
449
538
559
554
553 | %
22.3
21.4
25.3
24.6
23.5
23.6 | 360
342
311
365
391
372 | %
17.4
16.3
14.6
16.0
16.6
15.9 | Number
209
246
222
264
272
251 | 0+
%
10.1
11.7
10.4
11.6
11.5
10.7 | | 2009
2010
2011
2012
2013
2014
2015 | 617
643
635
689
735
760
710 | %
29.8
30.6
29.9
30.3
31.1
32.4
30.8 | Number 461 449 538 559 554 553 606 | %
22.3
21.4
25.3
24.6
23.5
23.6
26.3 | 360
342
311
365
391
372
321 | %
17.4
16.3
14.6
16.0
16.6
15.9
13.9 | 209
246
222
264
272
251
254 | 0+
10.1
11.7
10.4
11.6
11.5
10.7
11.0 | Figure 5.1.9a: Age distribution at onset of STEMI The median age at onset of NSTEMI increased from 71.3 years in 2009 to 72.3 years in 2018 (Table 5.1.9b), and it was about 10 years older than the median age at onset of STEMI (Table 5.1.9a). The highest proportion of NSTEMI episodes was found among patients aged 80 years and above (31.3%) in 2018 (Figure 5.1.9b). Table 5.1.9b: Age distribution at onset of NSTEMI | Voor of apport | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | |--|---|---|--|---|--|---|--|--| | Year of onset | Median | age | Number | % | Number | % | Number | % | | 2009 | 71.3
71.8 | | 5 | 0.1 | 39 | 0.9 | 273 | 6.3 | | 2010 | | | 1 | 0.0 | 53 | 1.1 | 295 | 6.1 | | 2011 | 72.0 | | 5 | 0.1 | 46 | 0.9 | 331 | 6.3 | | 2012 | 71.7 | • | 9 | 0.1 | 62 | 1.0 | 373 | 5.8 | | 2013 | 72.3 | } | 8 | 0.1 | 60 | 0.9 | 407 | 6.0 | | 2014 | 72.1 | | 3 | 0.0 | 59 | 0.8 | 411 | 5.8 | | 2015 | 72.1 | | 10 | 0.1 | 67 | 0.9 | 381 | 5.1 | | 2016 | 72.0 |) | 7 | 0.1 | 79 | 1.0 | 393 | 4.9 | | 2017 | 72.2 |) | 9 | 0.1 | 104 | 1.2 | 382 | 4.3 | | 2018 | 72.3 | , | 10 | 0.1 | 73 | 0.8 | 414 | 4.7 | | | | | Age 60-69 | | | | | | | Voor of open | Age 50 | -59 | Age 60 | -69 | Age 70 | -79 | Age 8 | | | Year of onset | Age 50
Number | -59
% | Age
60
Number | -69
% | Age 70
Number | -79
% | Age 8 | | | Year of onset 2009 | | | | | | | | 0+ | | | Number | % | Number | % | Number | % | Number | 0+
% | | 2009 | Number
704 | % 16.3 | Number
966 | % 22.3 | Number
1275 | % 29.4 | Number
1068 | 0+ % 24.7 | | 2009
2010 | Number 704 847 | %
16.3
17.6 | 966
953 | %
22.3
19.9 | Number
1275
1371 | %
29.4
28.6 | Number
1068
1279 | 0+ % 24.7 26.7 | | 2009
2010
2011 | 704
847
812 | %
16.3
17.6
15.5 | 966
953
1115 | %
22.3
19.9
21.2 | 1275
1371
1536 | %
29.4
28.6
29.3 | 1068
1279
1406 | 0+
%
24.7
26.7
26.8 | | 2009
2010
2011
2012 | 704
847
812
1059 | %
16.3
17.6
15.5
16.6 | 966
953
1115
1431 | %
22.3
19.9
21.2
22.4 | 1275
1371
1536
1749 | %
29.4
28.6
29.3
27.4 | 1068
1279
1406
1695 | 0+
%
24.7
26.7
26.8
26.6 | | 2009
2010
2011
2012
2013 | Number
704
847
812
1059
1061 | %
16.3
17.6
15.5
16.6
15.8 | 966
953
1115
1431
1502 | %
22.3
19.9
21.2
22.4
22.3 | Number
1275
1371
1536
1749
1738 | %
29.4
28.6
29.3
27.4
25.8 | 1068
1279
1406
1695
1954 | 0+
%
24.7
26.7
26.8
26.6
29.0 | | 2009
2010
2011
2012
2013
2014 | Number
704
847
812
1059
1061
1141 | %
16.3
17.6
15.5
16.6
15.8
16.1 | 966
953
1115
1431
1502
1620 | %
22.3
19.9
21.2
22.4
22.3
22.8 | Number
1275
1371
1536
1749
1738
1834 | %
29.4
28.6
29.3
27.4
25.8
25.8 | Number
1068
1279
1406
1695
1954
2040 | 0+
%
24.7
26.7
26.8
26.6
29.0
28.7 | | 2009
2010
2011
2012
2013
2014
2015 | Number
704
847
812
1059
1061
1141
1148 | %
16.3
17.6
15.5
16.6
15.8
16.1
15.3 | 966
953
1115
1431
1502
1620
1820 | %
22.3
19.9
21.2
22.4
22.3
22.8
24.3 | Number
1275
1371
1536
1749
1738
1834
1790 | %
29.4
28.6
29.3
27.4
25.8
25.8
23.9 | Number
1068
1279
1406
1695
1954
2040
2265 | 0+
24.7
26.7
26.8
26.6
29.0
28.7
30.3 | Figure 5.1.9b: Age distribution at onset of NSTEMI ## 5.2 Mortality The number of AMI deaths was 910 in 2018, a slight drop compared to 1,084 in 2009 (Table 5.2.1). Correspondingly, the crude mortality rate (CMR) declined slightly from 35.4 per 100,000 population in 2009 to 26.7 per 100,000 population in 2018 (Figure 5.2.1). However, taking into account Singapore's ageing population, the ASMR declined significantly from 29.6 per 100,000 population in 2009 to 15.9 per 100,000 population in 2018 (p<0.001). This decreasing trend in ASMR was likely due to the higher rates of revascularisation and pharmacotherapy. Table 5.2.1: Mortality number and rate of AMI (per 100,000 population) | Year of death | Number | CMR | 95% CI | ASMR | 95% CI | |---------------|--------|-------|-----------|--------|-----------| | 2009 | 1084 | 35.4 | 33.2-37.5 | 29.6 | 27.8-31.4 | | 2010 | 1021 | 32.8 | 30.7-34.8 | 26.1 | 24.5-27.8 | | 2011 | 907 | 28.8 | 26.9-30.6 | 22.5 | 21.0-24.0 | | 2012 | 852 | 26.7 | 24.9-28.5 | 20.0 | 18.6-21.3 | | 2013 | 816 | 25.3 | 23.5-27.0 | 18.2 | 16.9-19.4 | | 2014 | 870 | 26.7 | 24.9-28.4 | 18.5 | 17.2-19.7 | | 2015 | 880 | 26.7 | 24.9-28.4 | 17.6 | 16.4-18.8 | | 2016 | 885 | 26.5 | 24.8-28.3 | 17.0 | 15.8-18.1 | | 2017 | 1018 | 30.2 | 28.3-32.1 | 18.5 | 17.3-19.7 | | 2018 | 910 | 26.7 | 25.0-28.5 | 15.9 | 14.8-17.0 | | P for trend | - | 0.075 | - | <0.001 | - | Figure 5.2.1: Mortality rate of AMI (per 100,000 population) The median age at death increased from 74.9 years in 2009 to 78.1 years in 2018 (Table 5.2.2). About 4 in 10 of the patients aged 80 years and above died of AMI in 2018 (Figure 5.2.2). Table 5.2.2: Age distribution at death of AMI | Voor of dooth | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | |---------------|--------------------|----------|--------|------|-----------|------|--------|------| | Year of death | Median age
74.9 | | Number | % | Number | % | Number | % | | 2009 | 74.9
76.4 | | 1 | 0.1 | 6 | 0.6 | 44 | 4.1 | | 2010 | | | 2 | 0.2 | 3 | 0.3 | 46 | 4.5 | | 2011 | 75.8 | | 0 | 0.0 | 9 | 1.0 | 49 | 5.4 | | 2012 | 77.0 |) | 1 | 0.1 | 5 | 0.6 | 33 | 3.9 | | 2013 | 77.6 |) | 0 | 0.0 | 5 | 0.6 | 27 | 3.3 | | 2014 | 76.2 | | 1 | 0.1 | 6 | 0.7 | 33 | 3.8 | | 2015 | 76.7 | | 0 | 0.0 | 5 | 0.6 | 35 | 4.0 | | 2016 | 77.5 | , | 2 | 0.2 | 6 | 0.7 | 26 | 2.9 | | 2017 | 77.6 | ; | 1 | 0.1 | 7 | 0.7 | 21 | 2.1 | | 2018 | 78.1 | | 0 | 0.0 | 5 | 0.5 | 25 | 2.7 | | Year of death | Age 50 | -59 | Age 60 | -69 | Age 70-79 | | Age 8 | 0+ | | real of death | Number | % | Number | % | Number | % | Number | % | | 2009 | 158 | 14.6 | 201 | 18.5 | 329 | 30.4 | 345 | 31.8 | | 2010 | 107 | 10.5 | 179 | 17.5 | 280 | 27.4 | 404 | 39.6 | | 2011 | 106 | 11.7 | 167 | 18.4 | 227 | 25.0 | 349 | 38.5 | | 2012 | 101 | 11.9 | 157 | 18.4 | 213 | 25.0 | 342 | 40.1 | | 2013 | 91 | 11.2 | 144 | 17.6 | 225 | 27.6 | 324 | 39.7 | | 2014 | 116 | 13.3 | 157 | 18.0 | 215 | 24.7 | 342 | 39.3 | | 2015 | 103 | 11.7 | 159 | 18.1 | 216 | 24.5 | 362 | 41.1 | | 2016 | 90 | 10.2 | 189 | 21.4 | 207 | 23.4 | 365 | 41.2 | | | | | | | | | | | | 2017 | 96 | 9.4 | 193 | 19.0 | 266 | 26.1 | 434 | 42.6 | Figure 5.2.2: Age distribution at death of AMI The age-specific mortality rate increased with age, with the oldest age group having the highest mortality rate (Figure 5.2.3a). Over the past decade, significant drop in mortality rates were observed for all the age groups aged 40 years and above (Table 5.2.3). The drop in mortality rate was fastest among those aged 80 years and above (Figure 5.2.3b). Table 5.2.3: Age-specific mortality rate of AMI (per 100,000 population) | Voor of dooth | | Overall | | ge 15-29 | - | ge 30-39 | A | ge 40-49 | |---------------|-------|-----------|-------|-----------|-------|-------------|----------|-------------| | Year of death | CMR | 95% CI | | 2009 | 35.4 | 33.2-37.5 | 0.1 | 0.0-0.4 | 1.0 | 0.2-1.8 | 6.9 | 4.9-9.0 | | 2010 | 32.8 | 30.7-34.8 | 0.3 | 0.0-0.6 | 0.5 | 0.0-1.0 | 7.3 | 5.2-9.4 | | 2011 | 28.8 | 26.9-30.6 | 0.0 | - | 1.5 | 0.5-2.4 | 7.8 | 5.6-9.9 | | 2012 | 26.7 | 24.9-28.5 | 0.1 | 0.0-0.4 | 0.8 | 0.1-1.5 | 5.2 | 3.5-7.0 | | 2013 | 25.3 | 23.5-27.0 | 0.0 | • | 0.8 | 0.1-1.6 | 4.3 | 2.7-5.9 | | 2014 | 26.7 | 24.9-28.4 | 0.1 | 0.0-0.4 | 1.0 | 0.2-1.8 | 5.3 | 3.5-7.1 | | 2015 | 26.7 | 24.9-28.4 | 0.0 | • | 0.8 | 0.1-1.6 | 5.6 | 3.8-7.5 | | 2016 | 26.5 | 24.8-28.3 | 0.3 | 0.0-0.6 | 1.0 | 0.2-1.8 | 4.2 | 2.6-5.9 | | 2017 | 30.2 | 28.3-32.1 | 0.1 | 0.0-0.4 | 1.2 | 0.3-2.1 | 3.4 | 2.0-4.9 | | 2018 | 26.7 | 25.0-28.5 | 0.0 | - | 0.9 | 0.1-1.6 | 4.1 | 2.5-5.7 | | P for trend | 0.075 | 1 | - | • | 0.555 | - | 0.002 | - | | Year of death | Ag | ge 50-59 | Α | ge 60-69 | A | ge 70-79 | | Age 80+ | | real of death | CMR | 95% CI | | 2009 | 29.4 | 24.8-34.0 | 70.3 | 60.6-80.0 | 220.8 | 196.9-244.7 | 531.6 | 475.5-587.7 | | 2010 | 19.4 | 15.7-23.1 | 59.0 | 50.4-67.7 | 177.6 | 156.8-198.3 | 583.8 | 526.9-640.7 | | 2011 | 18.6 | 15.1-22.2 | 52.1 | 44.2-60.0 | 136.0 | 118.3-153.7 | 476.8 | 426.8-526.8 | | 2012 | 17.3 | 14.0-20.7 | 45.8 | 38.6-53.0 | 123.8 | 107.2-140.5 | 440.7 | 394.0-487.4 | | 2013 | 15.3 | 12.2-18.5 | 39.1 | 32.7-45.5 | 127.8 | 111.1-144.5 | 394.6 | 351.7-437.6 | | 2014 | 19.2 | 15.7-22.7 | 40.0 | 33.7-46.2 | 117.4 | 101.7-133.1 | 391.8 | 350.3-433.3 | | 2015 | 16.9 | 13.6-20.1 | 37.6 | 31.8-43.4 | 117.5 | 101.8-133.2 | 387.4 | 347.5-427.3 | | 2016 | 14.6 | 11.6-17.7 | 42.0 | 36.0-48.0 | 108.0 | 93.2-122.7 | 373.2 | 334.9-411.5 | | 2017 | 15.6 | 12.5-18.7 | 41.4 | 35.5-47.2 | 125.8 | 110.7-140.9 | 428.5 | 388.2-468.8 | | 2018 | 14.5 | 11.5-17.5 | 38.4 | 32.9-44.0 | 91.3 | 78.9-103.7 | 370.5 | 334.0-407.0 | | P for trend | 0.007 | - | 0.002 | - | 0.001 | - | 0.003 | - | Figure 5.2.3a: Age-specific mortality rate of AMI (per 100,000 population) across age groups Figure 5.2.3b: Age-specific mortality rate of AMI (per 100,000 population) across years As the ASIR was consistently higher among males than females across the years (Table 5.1.4), the ASMR was also consistently higher among males (Table 5.2.4). Males had an ASMR of 22.0 per 100,000 population, while females had an ASMR of 10.4 per 100,000 population in 2018. The ASMR declined significantly over the years for both genders (males: p<0.001, females: p=0.001) (Figure 5.2.4). Table 5.2.4: Mortality number and rate of AMI (per 100,000 population) by gender | | | | Male | | | | |--|--|---|--|--|--|--| | Year of death | Number | % | CMR | 95% CI | ASMR | 95% CI | | 2009 | 630 | 58.1 | 41.9 | 38.7-45.2 | 38.9 | 35.8-42.0 | | 2010 | 582 | 57.0 | 38.1 | 35.0-41.2 | 34.6 | 31.7-37.4 | | 2011 | 550 | 60.6 | 35.7 | 32.7-38.6 | 31.7 | 29.0-34.4 | | 2012 | 482 | 56.6 | 30.9 | 28.1-33.7 | 26.4 | 24.0-28.8 | | 2013 | 490 | 60.0 | 31.1 | 28.3-33.8 | 25.4 | 23.1-27.7 | | 2014 | 513 | 59.0 | 32.2 | 29.4-35.0 | 25.3 | 23.1-27.5 | | 2015 | 499 | 56.7 | 31.0 | 28.3-33.7 | 23.1 | 21.1-25.2 | | 2016 | 518 | 58.5 | 31.9 | 29.1-34.6 | 23.2 | 21.1-25.2 | | 2017 | 577 | 56.7 | 35.2 | 32.3-38.0 | 24.7 | 22.6-26.7 | | 2018 | 536 | 58.9 |
32.4 | 29.7-35.1 | 22.0 | 20.1-23.9 | | P for trend | - | - | 0.064 | 1 | <0.001 | - | | | | | | | | | | | | | Female | | | | | Year of death | Number | % | Female
CMR | 95% CI | ASMR | 95% CI | | Year of death
2009 | Number
454 | | | 95% CI 26.4-31.7 | ASMR 21.1 | 95% CI 19.1-23.1 | | | | % | CMR | | | | | 2009 | 454 | % 41.9 | CMR 29.0 | 26.4-31.7 | 21.1 | 19.1-23.1 | | 2009
2010 | 454
439 | % 41.9 43.0 | 29.0
27.6 | 26.4-31.7
25.0-30.2 | 21.1
18.7 | 19.1-23.1
16.9-20.5 | | 2009
2010
2011 | 454
439
357 | %
41.9
43.0
39.4 | 29.0
27.6
22.2 | 26.4-31.7
25.0-30.2
19.9-24.5 | 21.1
18.7
14.8 | 19.1-23.1
16.9-20.5
13.2-16.4 | | 2009
2010
2011
2012 | 454
439
357
370 | %
41.9
43.0
39.4
43.4 | 29.0
27.6
22.2
22.7 | 26.4-31.7
25.0-30.2
19.9-24.5
20.4-25.0 | 21.1
18.7
14.8
14.4 | 19.1-23.1
16.9-20.5
13.2-16.4
12.8-15.9 | | 2009
2010
2011
2012
2013 | 454
439
357
370
326 | %
41.9
43.0
39.4
43.4
40.0 | 29.0
27.6
22.2
22.7
19.7 | 26.4-31.7
25.0-30.2
19.9-24.5
20.4-25.0
17.6-21.9 | 21.1
18.7
14.8
14.4
11.9 | 19.1-23.1
16.9-20.5
13.2-16.4
12.8-15.9
10.6-13.3 | | 2009
2010
2011
2012
2013
2014 | 454
439
357
370
326
357 | %
41.9
43.0
39.4
43.4
40.0
41.0 | 29.0
27.6
22.2
22.7
19.7
21.4 | 26.4-31.7
25.0-30.2
19.9-24.5
20.4-25.0
17.6-21.9
19.2-23.6 | 21.1
18.7
14.8
14.4
11.9
12.5 | 19.1-23.1
16.9-20.5
13.2-16.4
12.8-15.9
10.6-13.3
11.1-13.8 | | 2009
2010
2011
2012
2013
2014
2015 | 454
439
357
370
326
357
381 | %
41.9
43.0
39.4
43.4
40.0
41.0
43.3 | 29.0
27.6
22.2
22.7
19.7
21.4
22.5 | 26.4-31.7
25.0-30.2
19.9-24.5
20.4-25.0
17.6-21.9
19.2-23.6
20.3-24.8 | 21.1
18.7
14.8
14.4
11.9
12.5
12.6 | 19.1-23.1
16.9-20.5
13.2-16.4
12.8-15.9
10.6-13.3
11.1-13.8
11.2-13.9 | | 2009
2010
2011
2012
2013
2014
2015
2016 | 454
439
357
370
326
357
381
367 | %
41.9
43.0
39.4
43.4
40.0
41.0
43.3
41.5 | 29.0
27.6
22.2
22.7
19.7
21.4
22.5
21.4 | 26.4-31.7
25.0-30.2
19.9-24.5
20.4-25.0
17.6-21.9
19.2-23.6
20.3-24.8
19.2-23.6 | 21.1
18.7
14.8
14.4
11.9
12.5
12.6
11.5 | 19.1-23.1
16.9-20.5
13.2-16.4
12.8-15.9
10.6-13.3
11.1-13.8
11.2-13.9
10.3-12.8 | Figure 5.2.4: Mortality rate of AMI (per 100,000 population) by gender The median age at death among males ranged from 70.6 to 74.1 years in the past decade (Table 5.2.5a). The highest proportion of AMI deaths was observed among males aged 80 years and above (30.6%) in 2018 (Figure 5.2.5a). Table 5.2.5a: Age distribution at death of AMI among males | Year of death | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | | |---|---|--|---|--|---|--|--|--|--| | rear or death | Median | age | Number | % | Number | % | Number | % | | | 2009 | 70.6 | ; | 1 | 0.2 | 6 | 1.0 | 35 | 5.6 | | | 2010 | 71.9 |) | 1 | 0.2 | 3 | 0.5 | 39 | 6.7 | | | 2011 | 71.4 | | 0 | 0.0 | 7 | 1.3 | 39 | 7.1 | | | 2012 | 72.4 | | 1 | 0.2 | 4 | 8.0 | 27 | 5.6 | | | 2013 | 72.9 |) | 0 | 0.0 | 5 | 1.0 | 22 | 4.5 | | | 2014 | 72.0 | | 1 | 0.2 | 5 | 1.0 | 26 | 5.1 | | | 2015 | 72.5 |) | 0 | 0.0 | 2 | 0.4 | 29 | 5.8 | | | 2016 | 71.0 |) | 1 | 0.2 | 6 | 1.2 | 20 | 3.9 | | | 2017 | 74.1 | | 1 | 0.2 | 7 | 1.2 | 18 | 3.1 | | | 2018 | 71.9 | | 0 | 0.0 | 3 | 0.6 | 22 | 4.1 | | | _0.0 | | | • | 0.0 | • | • | | | | | | Age 50 | | Age 60 | | Age 70 | | Age 8 | | | | Year of death | | | - | | | | | | | | | Age 50 | -59 | Age 60 | -69 | Age 70 | -79 | Age 8 | 0+ | | | Year of death | Age 50
Number | -59
% | Age 60
Number | -69
% | Age 70
Number | -79
% | Age 8 | 0+
% | | | Year of death 2009 | Age 50
Number
132 | -59 % 21.0 | Age 60
Number
131 | -69 % 20.8 | Age 70
Number
192 | -79 % 30.5 | Age 8
Number
133 | 0+ % 21.1 | | | Year of death 2009 2010 | Age 50 Number 132 90 | -59 % 21.0 15.5 | Age 60
Number
131
124 | -69 20.8 21.3 | Age 70
Number
192
152 | -79 % 30.5 26.1 | Age 8
Number
133
173 | 0+ | | | Year of death 2009 2010 2011 | Age 50
Number
132
90
88 | - 59 21.0 15.5 16.0 | Age 60
Number
131
124
123 | -69
%
20.8
21.3
22.4 | Age 70
Number
192
152
131 | - 79 30.5 26.1 23.8 | Age 8
Number
133
173
162 | 0+
%
21.1
29.7
29.5 | | | Year of death 2009 2010 2011 2012 | Age 50
Number
132
90
88
72 | -59
%
21.0
15.5
16.0
14.9 | Age 60
Number
131
124
123
112 | -69
%
20.8
21.3
22.4
23.2 | Age 70
Number
192
152
131
118 | - 79 % 30.5 26.1 23.8 24.5 | Age 8
Number
133
173
162
148 | 0+
%
21.1
29.7
29.5
30.7 | | | Year of death 2009 2010 2011 2012 2013 | Age 50
Number
132
90
88
72
79 | -59
%
21.0
15.5
16.0
14.9
16.1 | Age 60
Number
131
124
123
112
104 | -69
%
20.8
21.3
22.4
23.2
21.2 | Age 70
Number
192
152
131
118
135 | - 79 30.5 26.1 23.8 24.5 27.6 | Age 8
Number
133
173
162
148
145 | 0+
%
21.1
29.7
29.5
30.7
29.6 | | | Year of death 2009 2010 2011 2012 2013 2014 | Age 50
Number
132
90
88
72
79
94 | -59
%
21.0
15.5
16.0
14.9
16.1
18.3 | Age 60
Number
131
124
123
112
104
109 | -69
%
20.8
21.3
22.4
23.2
21.2
21.2 | Age 70
Number
192
152
131
118
135
133 | - 79 30.5 26.1 23.8 24.5 27.6 25.9 | Age 8
Number
133
173
162
148
145
145 | 0+
%
21.1
29.7
29.5
30.7
29.6
28.3 | | | Year of death 2009 2010 2011 2012 2013 2014 2015 | Age 50 Number 132 90 88 72 79 94 79 | -59
%
21.0
15.5
16.0
14.9
16.1
18.3
15.8 | Age 60
Number
131
124
123
112
104
109
115 | -69
%
20.8
21.3
22.4
23.2
21.2
21.2
23.0 | Age 70
Number
192
152
131
118
135
133
130 | -79
%
30.5
26.1
23.8
24.5
27.6
25.9
26.1 | Age 8
Number
133
173
162
148
145
145
144 | 0+
21.1
29.7
29.5
30.7
29.6
28.3
28.9 | | Figure 5.2.5a: Age distribution at death of AMI among males Similar to the median age at onset of AMI (Tables 5.1.5a and 5.1.5b), females had an older median age at death than males, which increased from 79.1 years in 2009 to 84.1 years in 2018 (Table 5.2.5b). The highest proportion of AMI deaths was observed among females aged 80 years and above (62.0%) in 2018 (Figure 5.2.5b). Table 5.2.5b: Age distribution at death of AMI among females | Veer of death | Overa | II | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | |--|--|---|--|---|--|---|---|---| | Year of death | Median a | age | Number | % | Number | % | Number | % | | 2009 | 79.1 | | 0 | 0.0 | 0 | 0.0 | 9 | 2.0 | | 2010 | 80.6 | | 1 | 0.2 | 0 | 0.0 | 7 | 1.6 | | 2011 | 80.5 | | 0 | 0.0 | 2 | 0.6 | 10 | 2.8 | | 2012 | 80.6 | | 0 | 0.0 | 1 | 0.3 | 6 | 1.6 | | 2013 | 81.5 | | 0 | 0.0 | 0 | 0.0 | 5 | 1.5 | | 2014 | 81.3 | | 0 | 0.0 | 1 | 0.3 | 7 | 2.0 | | 2015 | 82.2 | | 0 | 0.0 | 3 | 8.0 | 6 | 1.6 | | 2016 | 81.7 | | 1 | 0.3 | 0 | 0.0 | 6 | 1.6 | | 2017 | 82.1 | | 0 | 0.0 | 0 | 0.0 | 3 | 0.7 | | 2018 | 84.1 | | 0 | 0.0 | 2 | 0.5 | 3 | 8.0 | | | | | Age 60-69 | | | | | | | Voor of dooth | Age 50- | ·59 | Age 60 | -69 | Age 70 | -79 | Age 8 | 0+ | | Year of death | Age 50-
Number | ·59
% | Age 60
Number | -69
% | Age 70
Number | -79
% | Age 80
Number | 0+
% | | Year of death 2009 | | | | | | | | | | | Number | % | Number | % | Number | % | Number | % | | 2009 | Number
26 | % 5.7 | Number
70 | % 15.4 | Number
137 | % 30.2 | Number
212 | % 46.7 | | 2009
2010 | 26
17 | %
5.7
3.9 | 70
55 | %
15.4
12.5 | 137
128 | %
30.2
29.2 | 212
231 | %
46.7
52.6 | | 2009
2010
2011 | 26
17
18 | %
5.7
3.9
5.0 | 70
55
44 | %
15.4
12.5
12.3 | 137
128
96 | %
30.2
29.2
26.9 | 212
231
187 | %
46.7
52.6
52.4 | | 2009
2010
2011
2012 | 26
17
18
29 | 5.7
3.9
5.0
7.8 | 70
55
44
45 | %
15.4
12.5
12.3
12.2 | 137
128
96
95 | %
30.2
29.2
26.9
25.7 | 212
231
187
194 | %
46.7
52.6
52.4
52.4 | | 2009
2010
2011
2012
2013 | 26
17
18
29
12 |
5.7
3.9
5.0
7.8
3.7 | 70
55
44
45
40 | %
15.4
12.5
12.3
12.2
12.3 | 137
128
96
95
90 | %
30.2
29.2
26.9
25.7
27.6 | 212
231
187
194
179 | %
46.7
52.6
52.4
52.4
54.9 | | 2009
2010
2011
2012
2013
2014 | 26
17
18
29
12
22 | %
5.7
3.9
5.0
7.8
3.7
6.2 | 70
55
44
45
40
48 | %
15.4
12.5
12.3
12.2
12.3
13.4 | 137
128
96
95
90
82 | %
30.2
29.2
26.9
25.7
27.6
23.0 | 212
231
187
194
179
197 | %
46.7
52.6
52.4
52.4
54.9
55.2 | | 2009
2010
2011
2012
2013
2014
2015 | 26
17
18
29
12
22
24 | 5.7
3.9
5.0
7.8
3.7
6.2
6.3 | 70
55
44
45
40
48
44 | %
15.4
12.5
12.3
12.2
12.3
13.4
11.5 | 137
128
96
95
90
82
86 | %
30.2
29.2
26.9
25.7
27.6
23.0
22.6 | 212
231
187
194
179
197
218 | %
46.7
52.6
52.4
52.4
54.9
55.2
57.2 | Figure 5.2.5b: Age distribution at death of AMI among females As Chinese consistently had the lowest ASIR across the years (Table 5.1.6), they also consistently had the lowest ASMR (Table 5.2.6). The ASMR of 12.9 per 100,000 population among Chinese was lower than the ASMR for Malays (33.3 per 100,000 population) and Indians (26.7 per 100,000 population) in 2018. The ASMR showed a significant downward trend over the years for Chinese (p<0.001) and Malays (p=0.001) but not for Indians (p=0.131) (Figure 5.2.6). Table 5.2.6: Mortality number and rate of AMI (per 100,000 population) by ethnicity | | | (| Chinese | | | | |---------------|--------|------|---------|-----------|--------|-----------| | Year of death | Number | % | CMR | 95% CI | ASMR | 95% CI | | 2009 | 741 | 68.4 | 31.9 | 29.6-34.2 | 24.3 | 22.5-26.1 | | 2010 | 730 | 71.5 | 31.0 | 28.7-33.2 | 22.4 | 20.8-24.1 | | 2011 | 623 | 68.7 | 26.2 | 24.1-28.2 | 18.6 | 17.1-20.1 | | 2012 | 608 | 71.4 | 25.2 | 23.2-27.2 | 16.9 | 15.5-18.3 | | 2013 | 591 | 72.4 | 24.2 | 22.3-26.2 | 15.6 | 14.3-16.8 | | 2014 | 606 | 69.7 | 24.6 | 22.6-26.6 | 15.2 | 14.0-16.4 | | 2015 | 626 | 71.1 | 25.1 | 23.1-27.1 | 14.8 | 13.6-16.0 | | 2016 | 622 | 70.3 | 24.7 | 22.7-26.6 | 14.1 | 12.9-15.2 | | 2017 | 707 | 69.4 | 27.8 | 25.7-29.8 | 15.0 | 13.9-16.2 | | 2018 | 633 | 69.6 | 24.6 | 22.7-26.6 | 12.9 | 11.9-13.9 | | P for trend | - | - | 0.056 | - | <0.001 | - | | | | | Malay | | | | | Year of death | Number | % | CMR | 95% CI | ASMR | 95% CI | | 2009 | 229 | 21.1 | 59.6 | 51.9-67.3 | 64.9 | 56.1-73.6 | | 2010 | 193 | 18.9 | 49.3 | 42.4-56.3 | 53.2 | 45.4-61.0 | | 2011 | 177 | 19.5 | 44.6 | 38.0-51.1 | 47.9 | 40.5-55.2 | | 2012 | 146 | 17.1 | 36.2 | 30.4-42.1 | 37.0 | 30.8-43.2 | | 2013 | 148 | 18.1 | 36.2 | 30.4-42.0 | 36.1 | 30.1-42.1 | | 2014 | 160 | 18.4 | 38.6 | 32.6-44.6 | 36.9 | 31.0-42.7 | | 2015 | 151 | 17.2 | 35.9 | 30.2-41.7 | 32.7 | 27.3-38.0 | | 2016 | 160 | 18.1 | 37.6 | 31.8-43.4 | 32.5 | 27.3-37.7 | | 2017 | 176 | 17.3 | 40.8 | 34.8-46.9 | 35.9 | 30.5-41.3 | | 2018 | 173 | 19.0 | 39.7 | 33.8-45.7 | 33.3 | 28.3-38.4 | | P for trend | - | - | 0.042 | - | 0.001 | - | | | | | Indian | | | | | Year of death | Number | % | CMR | 95% CI | ASMR | 95% CI | | 2009 | 105 | 9.7 | 39.2 | 31.7-46.7 | 44.7 | 35.8-53.6 | | 2010 | 85 | 8.3 | 31.1 | 24.5-37.7 | 35.4 | 27.6-43.2 | | 2011 | 100 | 11.0 | 36.3 | 29.2-43.4 | 38.9 | 30.9-46.8 | | 2012 | 87 | 10.2 | 31.2 | 24.6-37.7 | 32.9 | 25.8-40.0 | | 2013 | 60 | 7.4 | 21.3 | 15.9-26.7 | 21.8 | 16.1-27.5 | | 2014 | 81 | 9.3 | 28.5 | 22.3-34.8 | 27.4 | 21.3-33.6 | | 2015 | 91 | 10.3 | 31.8 | 25.3-38.3 | 29.9 | 23.6-36.2 | | 2016 | 93 | 10.5 | 32.2 | 25.7-38.8 | 29.5 | 23.4-35.6 | | 2017 | 125 | 12.3 | 42.9 | 35.4-50.4 | 36.7 | 30.2-43.2 | | 2018 | 96 | 10.5 | 32.6 | 26.1-39.2 | 26.7 | 21.3-32.1 | | P for trend | - | - | 0.928 | - | 0.131 | - | Figure 5.2.6: Mortality rate of AMI (per 100,000 population) by ethnicity Similar to the median age at onset of AMI (Tables 5.1.7a to 5.1.7c), Chinese had the oldest median age at death, which increased from 76.0 years in 2009 to 80.4 years in 2018 (Table 5.2.7a). The highest proportion of AMI deaths was observed among Chinese aged 80 years and above (50.9%) in 2018 (Figure 5.2.7a). Table 5.2.7a: Age distribution at death of AMI among Chinese | Voor of dooth | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | |--|--|---|---|---|---|---|---|---| | Year of death | Median | age | Number | % | Number | % | Number | % | | 2009 | 76.0 |) | 1 | 0.1 | 4 | 0.5 | 15 | 2.0 | | 2010 | 77.2 | | 0 | 0.0 | 2 | 0.3 | 31 | 4.2 | | 2011 | 77.5 | | 0 | 0.0 | 3 | 0.5 | 24 | 3.9 | | 2012 | 79.2 |) | 1 | 0.2 | 3 | 0.5 | 16 | 2.6 | | 2013 | 79.0 |) | 0 | 0.0 | 4 | 0.7 | 12 | 2.0 | | 2014 | 78.3 | | 1 | 0.2 | 1 | 0.2 | 12 | 2.0 | | 2015 | 78.9 | | 0 | 0.0 | 4 | 0.6 | 21 | 3.4 | | 2016 | 78.9 |) | 0 | 0.0 | 3 | 0.5 | 11 | 1.8 | | 2017 | 79.6 | ; | 1 | 0.1 | 3 | 0.4 | 9 | 1.3 | | 2018 | 80.4 | | 0 | 0.0 | 1 | 0.2 | 12 | 1.9 | | | | | Age 60-69 | | | | | | | Voar of doath | Age 50 | -59 | Age 60 | -69 | Age 70 | -79 | Age 8 | 0+ | | Year of death | Age 50
Number | -59
% | Age 60
Number | -69
% | Age 70
Number | -79
% | Age 8 | 0+
% | | Year of death 2009 | | | | | | | | | | | Number | % | Number | % | Number | % | Number | % | | 2009 | Number
98 | % 13.2 | Number
127 | % 17.1 | Number
224 | % 30.2 | Number
272 | % 36.7 | | 2009
2010 | 98
73 | %
13.2
10.0 | 127
118 | %
17.1
16.2 | 224
204 | %
30.2
27.9 | 272
302 | %
36.7
41.4 | | 2009
2010
2011 | 98
73
52 | %
13.2
10.0
8.3 | 127
118
116 | %
17.1
16.2
18.6 | 224
204
164 | %
30.2
27.9
26.3 | 272
302
264 | %
36.7
41.4
42.4 | | 2009
2010
2011
2012 | 98
73
52
55 | %
13.2
10.0
8.3
9.0 | 127
118
116
97 | %
17.1
16.2
18.6
16.0 | 224
204
164
149 | %
30.2
27.9
26.3
24.5
29.1
26.6 | 272
302
264
287 | %
36.7
41.4
42.4
47.2 | | 2009
2010
2011
2012
2013 | 98
73
52
55
53 | %
13.2
10.0
8.3
9.0
9.0 | 127
118
116
97
83 | %
17.1
16.2
18.6
16.0
14.0 | 224
204
164
149
172 | %
30.2
27.9
26.3
24.5
29.1 | 272
302
264
287
267 | %
36.7
41.4
42.4
47.2
45.2 | | 2009
2010
2011
2012
2013
2014 | 98 73 52 55 53 63 | %
13.2
10.0
8.3
9.0
9.0
10.4 | 127
118
116
97
83
96 | %
17.1
16.2
18.6
16.0
14.0
15.8 | 224
204
164
149
172
161 | %
30.2
27.9
26.3
24.5
29.1
26.6 | 272
302
264
287
267
272 | %
36.7
41.4
42.4
47.2
45.2
44.9 | | 2009
2010
2011
2012
2013
2014
2015 | 98
73
52
55
53
63
51 | %
13.2
10.0
8.3
9.0
9.0
10.4
8.1 | 127
118
116
97
83
96
95 | %
17.1
16.2
18.6
16.0
14.0
15.8
15.2 | 224
204
164
149
172
161
159 | %
30.2
27.9
26.3
24.5
29.1
26.6
25.4 | 272
302
264
287
267
272
296 | %
36.7
41.4
42.4
47.2
45.2
44.9
47.3 | Figure 5.2.7a: Age distribution at death of AMI among Chinese The median age at death among Malays ranged from 66.5 to 73.1 years in the past decade (Table 5.2.7b). The highest proportion of AMI deaths was observed among Malays aged 70-79 years (28.3%) in 2018 (Figure 5.2.7b). Table 5.2.7b: Age distribution at death of AMI among Malays | | Overa | all | Age 15 | -29 | Age 30 | -39 | Age 40 | -49 | |--|--|---|--|---|----------------------------------|---|--|---| | Year of death | Median | | Number | % | Number | % | Number | % | | 2009 | 71.0 | | 0 | 0.0 | 2 | 0.9 | 17 | 7.4 | | 2010 | 72.5 |) | 2 | 1.0 | 1 | 0.5 | 11 | 5.7 | | 2011 | 73.1 | | 0 | 0.0 | 1 | 0.6 | 13 | 7.3 | | 2012 | 68.3 | } | 0 | 0.0 | 0 | 0.0 | 11 | 7.5 | | 2013 | 67.0 |) | 0 | 0.0 | 1 | 0.7 | 10 | 6.8 | | 2014 | 66.5 | | 0 | 0.0 | 3 | 1.9 | 15 | 9.4 | | 2015 | 68.8 | | 0 | 0.0 | 1 | 0.7 | 10 | 6.6 | | 2016 | 71.7 | • | 1 | 0.6 | 1 | 0.6 | 9 | 5.6 | | 2017 | 71.1 | | 0 | 0.0 | 2 | 1.1 | 7 | 4.0 | | 2018 | 69.5 | , | 0 | 0.0 | 3 | 1.7 | 6 | 3.5 | | | | | Age 60-69 | | | | | | | Voor of dooth | Age 50 | -59 | Age 60 | -69 | Age 70 | -79 | Age 8 | 0+ | | Year of death | Age 50
Number | -59
% | Age 60
Number | -69
% | Age 70
Number | -79
% | Age 8 | 0+
% | | Year of death 2009 | | | | | | % 34.1 | | | | | Number | % | Number | % | Number | % | Number | % | | 2009 | Number
38 | % 16.6 | Number
51 | % 22.3 | Number
78 | % 34.1 | Number
43 | % 18.8 | | 2009
2010 | Number
38
25 | %
16.6
13.0 | Number
51
45 | %
22.3
23.3 | 78
50 | %
34.1
25.9
24.9
26.7 | Number 43 59 | %
18.8
30.6 | | 2009
2010
2011 |
38
25
30 | %
16.6
13.0
16.9 | 51
45
36 | %
22.3
23.3
20.3 | 78
50
44 | %
34.1
25.9
24.9 | 43
59
53 | %
18.8
30.6
29.9 | | 2009
2010
2011
2012 | 38
25
30
30 | %
16.6
13.0
16.9
20.5 | 51
45
36
37 | %
22.3
23.3
20.3
25.3
28.4
27.5 | 78
50
44
39 | %
34.1
25.9
24.9
26.7 | 43
59
53
29 | %
18.8
30.6
29.9
19.9 | | 2009
2010
2011
2012
2013 | 38
25
30
30
28 | %
16.6
13.0
16.9
20.5
18.9 | 51
45
36
37
42 | %
22.3
23.3
20.3
25.3
28.4 | 78
50
44
39
36 | %
34.1
25.9
24.9
26.7
24.3 | 43
59
53
29
31 | %
18.8
30.6
29.9
19.9
20.9 | | 2009
2010
2011
2012
2013
2014 | 38
25
30
30
28
33 | %
16.6
13.0
16.9
20.5
18.9
20.6 | 51
45
36
37
42
44 | %
22.3
23.3
20.3
25.3
28.4
27.5 | 78
50
44
39
36
27 | %
34.1
25.9
24.9
26.7
24.3
16.9 | 43
59
53
29
31
38 | %
18.8
30.6
29.9
19.9
20.9
23.8 | | 2009
2010
2011
2012
2013
2014
2015 | 38
25
30
30
28
33
35 | %
16.6
13.0
16.9
20.5
18.9
20.6
23.2 | 51
45
36
37
42
44
32 | %
22.3
23.3
20.3
25.3
28.4
27.5
21.2 | 78
50
44
39
36
27 | %
34.1
25.9
24.9
26.7
24.3
16.9
23.2 | 43
59
53
29
31
38
38 | %
18.8
30.6
29.9
19.9
20.9
23.8
25.2 | Figure 5.2.7b: Age distribution at death of AMI among Malays The median age at death among Indians ranged from 67.8 to 77.8 years in the past decade (Table 5.2.7c). The highest proportion of AMI deaths was observed among Indians aged 80 years and above (35.4%) in 2018 (Figure 5.2.7c). Table 5.2.7c: Age distribution at death of AMI among Indians | Year of death | Overall | | Age 15-29 | | Age 30-39 | | Age 40-49 | | |---------------|------------|------|-----------|------|-----------|------|-----------|------| | real of death | Median age | | Number | % | Number | % | Number | % | | 2009 | 70.0 | | 0 | 0.0 | 0 | 0.0 | 12 | 11.4 | | 2010 | 77.8 | | 0 | 0.0 | 0 | 0.0 | 3 | 3.5 | | 2011 | 67.8 | | 0 | 0.0 | 5 | 5.0 | 11 | 11.0 | | 2012 | 71.9 | | 0 | 0.0 | 2 | 2.3 | 6 | 6.9 | | 2013 | 74.8 | | 0 | 0.0 | 0 | 0.0 | 4 | 6.7 | | 2014 | 73.7 | | 0 | 0.0 | 2 | 2.5 | 5 | 6.2 | | 2015 | 68.9 | | 0 | 0.0 | 0 | 0.0 | 2 | 2.2 | | 2016 | 70.3 | | 1 | 1.1 | 1 | 1.1 | 6 | 6.5 | | 2017 | 72.1 | | 0 | 0.0 | 2 | 1.6 | 4 | 3.2 | | 2018 | 69.1 | | 0 | 0.0 | 1 | 1.0 | 7 | 7.3 | | Year of death | Age 50-59 | | Age 60-69 | | Age 70-79 | | Age 80+ | | | | Number | % | Number | % | Number | % | Number | % | | 2009 | 18 | 17.1 | 23 | 21.9 | 26 | 24.8 | 26 | 24.8 | | 2010 | 8 | 9.4 | 15 | 17.6 | 24 | 28.2 | 35 | 41.2 | | 2011 | 22 | 22.0 | 14 | 14.0 | 18 | 18.0 | 30 | 30.0 | | 2012 | 14 | 16.1 | 19 | 21.8 | 25 | 28.7 | 21 | 24.1 | | 2013 | 6 | 10.0 | 16 | 26.7 | 13 | 21.7 | 21 | 35.0 | | 2014 | 12 | 14.8 | 14 | 17.3 | 22 | 27.2 | 26 | 32.1 | | 2015 | 16 | 17.6 | 29 | 31.9 | 22 | 24.2 | 22 | 24.2 | | 2016 | 13 | 14.0 | 25 | 26.9 | 19 | 20.4 | 28 | 30.1 | | 2017 | 23 | 18.5 | 33 | 26.6 | 27 | 21.8 | 36 | 29.0 | | 2018 | 14 | 14.6 | 29 | 30.2 | 11 | 11.5 | 34 | 35.4 | Figure 5.2.7c: Age distribution at death of AMI among Indians As the ASIR of NSTEMI was consistently higher than STEMI across the years (Table 5.1.8), the ASMR of NSTEMI was also consistently higher (Table 5.2.8). The ASMR of STEMI declined significantly from 6.5 per 100,000 population in 2009 to 4.2 per 100,000 population in 2018 (p=0.015). Similarly, the ASMR of NSTEMI declined significantly from 13.4 per 100,000 population in 2009 to 6.2 per 100,000 population in 2018 (p=0.004) (Figure 5.2.8). Table 5.2.8: Mortality number and rate of AMI (per 100,000 population) by subtype | | | | STEMI | | | | |---------------|--------|------|--------|-----------|-------|-----------| | Year of death | Number | % | CMR | 95% CI | ASMR | 95% CI | | 2009 | 236 | 21.8 | 7.7 | 6.7-8.7 | 6.5 | 5.6-7.3 | | 2010 | 255 | 25.0 | 8.2 | 7.2-9.2 | 6.6 | 5.8-7.5 | | 2011 | 219 | 24.1 | 6.9 | 6.0-7.9 | 5.5 | 4.8-6.3 | | 2012 | 210 | 24.6 | 6.6 | 5.7-7.5 | 4.9 | 4.2-5.6 | | 2013 | 218 | 26.7 | 6.8 | 5.9-7.6 | 4.9 | 4.3-5.6 | | 2014 | 237 | 27.2 | 7.3 | 6.3-8.2 | 5.2 | 4.5-5.9 | | 2015 | 257 | 29.2 | 7.8 | 6.8-8.7 | 5.3 | 4.6-5.9 | | 2016 | 221 | 25.0 | 6.6 | 5.7-7.5 | 4.5 | 3.9-5.1 | | 2017 | 291 | 28.6 | 8.6 | 7.6-9.6 | 5.6 | 5.0-6.3 | | 2018 | 226 | 24.8 | 6.6 | 5.8-7.5 | 4.2 | 3.6-4.7 | | P for trend | - | - | 0.716 | - | 0.015 | - | | | | 1 | NSTEMI | | | | | Year of death | Number | % | CMR | 95% CI | ASMR | 95% CI | | 2009 | 496 | 45.8 | 16.2 | 14.8-17.6 | 13.4 | 12.2-14.6 | | 2010 | 457 | 44.8 | 14.7 | 13.3-16.0 | 11.3 | 10.3-12.4 | | 2011 | 366 | 40.4 | 11.6 | 10.4-12.8 | 8.7 | 7.8-9.6 | | 2012 | 322 | 37.8 | 10.1 | 9.0-11.2 | 7.3 | 6.5-8.1 | | 2013 | 300 | 36.8 | 9.3 | 8.2-10.3 | 6.4 | 5.7-7.2 | | 2014 | 367 | 42.2 | 11.2 | 10.1-12.4 | 7.5 | 6.8-8.3 | | 2015 | 390 | 44.3 | 11.8 | 10.6-13.0 | 7.5 | 6.8-8.3 | | 2016 | 350 | 39.5 | 10.5 | 9.4-11.6 | 6.4 | 5.7-7.1 | | 2017 | 414 | 40.7 | 12.3 | 11.0-13.5 | 7.2 | 6.5-7.9 | | 2018 | 376 | 41.3 | 11.0 | 9.9-12.2 | 6.2 | 5.6-6.9 | | P for trend | - | - | 0.140 | - | 0.004 | - | Figure 5.2.8: Mortality rate of AMI (per 100,000 population) by subtype The median age at death among STEMI patients ranged from 70.9 to 76.1 years in the past decade (Table 5.2.9a). The highest proportion of AMI deaths was observed among STEMI patients aged 80 years and above (28.8%) in 2018 (Figure 5.2.9a). Table 5.2.9a: Age distribution at death of STEMI | Veer of decth | Vear of death Overall | | Age 15 | -29 | Age 30-39 | | Age 40-49 | | |--|--|--|--|--|--|--|--|--| | Year of death | Median | age | Number | % | Number | % | Number | % | | 2009 | 73.1 | | 0 | 0.0 | 1 | 0.4 | 10 | 4.2 | | 2010 | 73.1 | | 0 | 0.0 | 0 | 0.0 | 18 | 7.1 | | 2011 | 73.7 | • | 0 | 0.0 | 1 | 0.5 | 10 | 4.6 | | 2012 | 76.1 | | 1 | 0.5 | 0 | 0.0 | 7 | 3.3 | | 2013 | 75.2 | | 0 | 0.0 | 2 | 0.9 | 7 | 3.2 | | 2014 | 73.2 | | 1 | 0.4 | 2 | 8.0 | 14 | 5.9 | | 2015 | 74.8 | } | 0 | 0.0 | 0 | 0.0 | 16 | 6.2 | | 2016 | 73.7 | • | 2 | 0.9 | 3 | 1.4 | 6 | 2.7 | | 2017 | 73.3 | } | 1 | 0.3 | 2 | 0.7 | 11 | 3.8 | | 2018 | 70.9 | | 0 | 0.0 | 0 | 0.0 | 7 | 3.1 | | | | | _ | | | | = | | | Voor of dooth | Age 50 | | Age 60 | | Age 70 | | Age 8 | | | Year of death | | | Age 60
Number | | Age 70
Number | | Age 80
Number | | | Year of death 2009 | Age 50 | -59 | | -69 | | -79 | | 0+ | | | Age 50
Number | -59
% | Number | -69
% | Number | -79
% | Number | 0+
% | | 2009 | Age 50
Number
42 | -59 % 17.8 | Number
48 | -69 % 20.3 | Number
71 | -79 % 30.1 | Number
64 | 0+ % 27.1 | | 2009
2010 | Age 50
Number
42
33 | -59 % 17.8 12.9 | Number 48 55 | -69 20.3 21.6 | 71
68 | -79 % 30.1 26.7 | Number
64
81 | 0+ % 27.1 31.8 | | 2009
2010
2011 | Age 50
Number
42
33
34 | - 59 | 48
55
45 | -69
%
20.3
21.6
20.5 | 71
68
50 | - 79 -30.1 -26.7 -22.8 | 64
81
79 | 0+
%
27.1
31.8
36.1 | | 2009
2010
2011
2012 | Age 50
Number
42
33
34
32 | -59
%
17.8
12.9
15.5
15.2 | 48
55
45
35 | -69
%
20.3
21.6
20.5
16.7 | 71
68
50
57 | - 79 % 30.1 26.7 22.8 27.1 | 64
81
79
78 | 0+
27.1
31.8
36.1
37.1 | | 2009
2010
2011
2012
2013 | Age 50
Number
42
33
34
32
32 | -59
%
17.8
12.9
15.5
15.2
14.7 | Number 48 55 45 35 52 | -69
%
20.3
21.6
20.5
16.7
23.9 | 71
68
50
57
46 | - 79 | Number
64
81
79
78
79 | 0+
27.1
31.8
36.1
37.1
36.2 | | 2009
2010
2011
2012
2013
2014 | Age 50
Number
42
33
34
32
32
37 | -59
%
17.8
12.9
15.5
15.2
14.7
15.6 | Number 48 55 45 35 52 43 | -69
%
20.3
21.6
20.5
16.7
23.9
18.1 | 71
68
50
57
46
63 | - 79 30.1 26.7 22.8 27.1 21.1 26.6 | Number
64
81
79
78
79
77 | 0+
%
27.1
31.8
36.1
37.1
36.2
32.5 | | 2009
2010
2011
2012
2013
2014
2015 | Age 50
Number
42
33
34
32
32
37
42 | -59
%
17.8
12.9
15.5
15.2
14.7
15.6
16.3 | 48
55
45
35
52
43
46 | -69
%
20.3
21.6
20.5
16.7
23.9
18.1
17.9 | 71
68
50
57
46
63
64 | - 79 30.1 26.7 22.8 27.1 21.1 26.6 24.9 | Number 64 81 79 78 79 77 89 | 0+
27.1
31.8
36.1
37.1
36.2
32.5
34.6 | Figure 5.2.9a: Age distribution at death of STEMI Similar to the median age at onset (Tables 5.1.9a and 5.1.9b), NSTEMI patients had an older median age at death than STEMI patients, which ranged from 77.7 to 82.1 years in the past decade (Table 5.2.9b). The highest proportion of AMI deaths was observed among NSTEMI patients aged 80 years and above (54.0%) in 2018 (Figure 5.2.9b). Table 5.2.9b: Age distribution at death of NSTEMI | Voor of doath | ear of death Overall | | Age 15 | -29 | Age 30-39 | | Age 40-49 | | |---------------|----------------------|-----|-----------|------
-----------|------|-----------|------| | rear or death | Median a | age | Number | % | Number | % | Number | % | | 2009 | 77.7 | | 0 | 0.0 | 1 | 0.2 | 6 | 1.2 | | 2010 | 80.2 | | 0 | 0.0 | 0 | 0.0 | 5 | 1.1 | | 2011 | 80.1 | | 0 | 0.0 | 1 | 0.3 | 10 | 2.7 | | 2012 | 80.3 | | 0 | 0.0 | 0 | 0.0 | 5 | 1.6 | | 2013 | 79.8 | | 0 | 0.0 | 0 | 0.0 | 3 | 1.0 | | 2014 | 79.7 | | 0 | 0.0 | 0 | 0.0 | 4 | 1.1 | | 2015 | 80.0 | | 0 | 0.0 | 1 | 0.3 | 6 | 1.5 | | 2016 | 80.0 | | 0 | 0.0 | 1 | 0.3 | 2 | 0.6 | | 2017 | 79.8 | | 0 | 0.0 | 1 | 0.2 | 0 | 0.0 | | 2018 | 82.1 | | 0 | 0.0 | 1 | 0.3 | 6 | 1.6 | | Year of death | Age 50- | 59 | Age 60-69 | | Age 70-79 | | Age 80+ | | | rear or death | Number | % | Number | % | Number | % | Number | % | | 2009 | 34 | 6.9 | 80 | 16.1 | 170 | 34.3 | 205 | 41.3 | | 2010 | 25 | 5.5 | 57 | 12.5 | 139 | 30.4 | 231 | 50.5 | | 2011 | 21 | 5.7 | 44 | 12.0 | 106 | 29.0 | 184 | 50.3 | | 2012 | 17 | 5.3 | 46 | 14.3 | 88 | 27.3 | 166 | 51.6 | | 2013 | 18 | 6.0 | 34 | 11.3 | 98 | 32.7 | 147 | 49.0 | | 2014 | 29 | 7.9 | 67 | 18.3 | 90 | 24.5 | 177 | 48.2 | | 2015 | 24 | 6.2 | 65 | 16.7 | 98 | 25.1 | 196 | 50.3 | | 2016 | 18 | 5.1 | 67 | 19.1 | 88 | 25.1 | 174 | 49.7 | | 2017 | 18 | 4.3 | 72 | 17.4 | 117 | 28.3 | 206 | 49.8 | | 2018 | 18 | 4.8 | 54 | 14.4 | 94 | 25.0 | 203 | 54.0 | Figure 5.2.9b: Age distribution at death of NSTEMI # 5.3 30-Day Case Fatality The number of AMI deaths within 30 days from onset fell from 1,021 in 2009 to 842 in 2018 (Table 5.3.1). Similarly, the CFR decreased significantly from 16.0% in 2009 to 7.6% in 2018 (p<0.001) (Figure 5.3.1). Higher rates of revascularisation and pharmacotherapy were likely to have contributed to the decreasing trend in case fatality. Table 5.3.1: Case fatality number and rate of AMI (%) | Year of onset | Number | CFR | 95% CI | |---------------|--------|--------|-----------| | 2009 | 1021 | 16.0 | 15.0-17.0 | | 2010 | 949 | 13.7 | 12.9-14.6 | | 2011 | 831 | 11.1 | 10.3-11.8 | | 2012 | 824 | 9.7 | 9.1-10.4 | | 2013 | 786 | 8.9 | 8.3-9.5 | | 2014 | 784 | 8.5 | 7.9-9.1 | | 2015 | 820 | 8.7 | 8.1-9.2 | | 2016 | 833 | 8.2 | 7.7-8.8 | | 2017 | 922 | 8.3 | 7.7-8.8 | | 2018 | 842 | 7.6 | 7.1-8.1 | | P for trend | - | <0.001 | - | Figure 5.3.1: Case fatality rate of AMI (%) Although the ASMR for males was consistently higher than females across the years (Table 5.2.4), the CFR for males was consistently lower than females (Table 5.3.2). The CFR was 6.6% for males and 9.6% for females in 2018. As females tended to have AMI at an older age than males (Tables 5.1.5a and 5.1.5b), they were likely to have more co-morbidities when AMI happened, making them more susceptible to the contraindications of revascularisation or declining revascularisation. Lower rate of revascularisation of the blocked arteries could have led to the higher CFR among females¹¹. The CFR fell significantly over the years for both genders (males: p<0.001, females: p=0.001) (Figure 5.3.2). Table 5.3.2: Case fatality number and rate of AMI (%) by gender | | Male | | | | | | | | |---------------|--------|------|--------|-----------|--|--|--|--| | Year of onset | Number | % | CFR | 95% CI | | | | | | 2009 | 596 | 58.4 | 14.1 | 12.9-15.2 | | | | | | 2010 | 543 | 57.2 | 11.9 | 10.9-12.9 | | | | | | 2011 | 509 | 61.3 | 10.1 | 9.3-11.0 | | | | | | 2012 | 468 | 56.8 | 8.4 | 7.6-9.2 | | | | | | 2013 | 474 | 60.3 | 8.3 | 7.5-9.0 | | | | | | 2014 | 455 | 58.0 | 7.6 | 6.9-8.3 | | | | | | 2015 | 464 | 56.6 | 7.5 | 6.8-8.2 | | | | | | 2016 | 487 | 58.5 | 7.3 | 6.7-7.9 | | | | | | 2017 | 520 | 56.4 | 7.0 | 6.4-7.6 | | | | | | 2018 | 492 | 58.4 | 6.6 | 6.0-7.2 | | | | | | P for trend | - | - | <0.001 | - | | | | | | | Fema | ale | | | | | | | | Year of onset | Number | % | CFR | 95% CI | | | | | | 2009 | 425 | 41.6 | 19.8 | 17.9-21.6 | | | | | | 2010 | 406 | 42.8 | 17.3 | 15.6-19.0 | | | | | | 2011 | 322 | 38.7 | 12.9 | 11.5-14.3 | | | | | | 2012 | 356 | 43.2 | 12.3 | 11.0-13.6 | | | | | | 2013 | 312 | 39.7 | 10.1 | 9.0-11.2 | | | | | | 2014 | 329 | 42.0 | 10.4 | 9.3-11.5 | | | | | | 2015 | 356 | 43.4 | 10.8 | 9.7-12.0 | | | | | | 2016 | 346 | 41.5 | 10.1 | 9.0-11.2 | | | | | | 2017 | 402 | 43.6 | 10.6 | 9.6-11.7 | | | | | | 2018 | 350 | 41.6 | 9.6 | 8.6-10.6 | | | | | | P for trend | - | - | 0.001 | - | | | | | ¹¹ Berger JS et al. Sex differences in mortality following acute coronary syndromes. JAMA 2009; 302(8): 874-882. Figure 5.3.2: Case fatality rate of AMI (%) by gender Although Chinese generally had the lowest ASMR (Table 5.2.6), they generally had the highest CFR across the years (Table 5.3.3). The CFRs were 8.0%, 7.1% and 6.4% for Chinese, Malays and Indians respectively in 2018. This was likely due to Chinese being oldest at onset of AMI (Tables 5.1.7a to 5.1.7c). The CFR fell significantly over the years for Chinese (p<0.001) and Malays (p=0.001) but not for Indians (p=0.081) (Figure 5.3.3). Table 5.3.3: Case fatality number and rate of AMI (%) by ethnicity | | Chi | inese | | - | |---------------|--------|-------|--------|-----------| | Year of onset | Number | % | CFR | 95% CI | | 2009 | 698 | 68.4 | 16.6 | 15.4-17.8 | | 2010 | 675 | 71.1 | 14.6 | 13.5-15.7 | | 2011 | 570 | 68.6 | 11.5 | 10.5-12.4 | | 2012 | 592 | 71.8 | 10.6 | 9.8-11.5 | | 2013 | 578 | 73.5 | 9.9 | 9.1-10.7 | | 2014 | 549 | 70.0 | 9.0 | 8.3-9.8 | | 2015 | 593 | 72.3 | 9.3 | 8.6-10.1 | | 2016 | 587 | 70.5 | 8.8 | 8.1-9.5 | | 2017 | 650 | 70.5 | 8.6 | 8.0-9.3 | | 2018 | 596 | 70.8 | 8.0 | 7.3-8.6 | | P for trend | - | - | <0.001 | - | | | M | alay | | | | Year of onset | Number | % | CFR | 95% CI | | 2009 | 212 | 20.8 | 17.2 | 14.9-19.5 | | 2010 | 182 | 19.2 | 13.8 | 11.8-15.9 | | 2011 | 167 | 20.1 | 11.4 | 9.6-13.1 | | 2012 | 140 | 17.0 | 8.3 | 6.9-9.7 | | 2013 | 139 | 17.7 | 8.1 | 6.7-9.4 | | 2014 | 140 | 17.9 | 8.0 | 6.7-9.4 | | 2015 | 140 | 17.1 | 7.6 | 6.3-8.9 | | 2016 | 149 | 17.9 | 7.4 | 6.2-8.6 | | 2017 | 150 | 16.3 | 7.2 | 6.1-8.4 | | 2018 | 150 | 17.8 | 7.1 | 6.0-8.2 | | P for trend | - | - | 0.001 | - | | | | dian | | | | Year of onset | Number | % | CFR | 95% CI | | 2009 | 102 | 10.0 | 11.7 | 9.4-14.0 | | 2010 | 80 | 8.4 | 9.1 | 7.1-11.1 | | 2011 | 88 | 10.6 | 8.9 | 7.0-10.8 | | 2012 | 80 | 9.7 | 7.4 | 5.8-9.0 | | 2013 | 54 | 6.9 | 4.9 | 3.6-6.2 | | 2014 | 73 | 9.3 | 6.2 | 4.8-7.6 | | 2015 | 77 | 9.4 | 6.7 | 5.2-8.2 | | 2016 | 88 | 10.6 | 6.8 | 5.4-8.2 | | 2017 | 113 | 12.3 | 8.1 | 6.6-9.6 | | 2018 | 88 | 10.5 | 6.4 | 5.0-7.7 | | P for trend | - | - | 0.081 | - | Figure 5.3.3: Case fatality rate of AMI (%) by ethnicity Although STEMI patients consistently had lower ASMR than NSTEMI patients across the years (Table 5.2.8), the CFR among STEMI patients was consistently higher than NSTEMI patients (Table 5.3.4). The CFRs were 8.1% and 4.1% for STEMI and NSTEMI patients respectively in 2018. A plausible reason was the severity of STEMI and possible fatality if intervention was not provided promptly. While the CFR for STEMI patients fluctuated over the years, it fell significantly for NSTEMI patients (p=0.001) (Figure 5.3.4). Table 5.3.4: Case fatality number and rate of AMI (%) by subtype | STEMI | | | | | | | |--|--|--|--|--|--|--| | Year of onset | Number | % | CFR | 95% CI | | | | 2009 | 224 | 21.9 | 11.2 | 9.7-12.6 | | | | 2010 | 245 | 25.8 | 12.0 | 10.5-13.4 | | | | 2011 | 205 | 24.7 | 9.9 | 8.5-11.3 | | | | 2012 | 201 | 24.4 | 9.1 | 7.9-10.4 | | | | 2013 | 213 | 27.1 | 9.3 | 8.1-10.6 | | | | 2014 | 219 | 27.9 | 9.6 | 8.4-10.9 | | | | 2015 | 249 | 30.4 | 11.0 | 9.7-12.4 | | | | 2016 | 208 | 25.0 | 8.9 | 7.7-10.1 | | | | 2017 | 273 | 29.6 | 11.1 | 9.8-12.4 | | | | 2018 | 206 | 24.5 | 8.1 | 7.0-9.2 | | | | P for trend | 1 | - | 0.141 | - | | | | | NSTE | MI | | | | | | Year of onset | Number | % | CFR | 95% CI | | | | 2009 | 444 | 43.5 | 11.1 | 10.1-12.2 | | | | 0010 | | | | | | | | 2010 | 397 | 41.8 | 9.0 | 8.1-9.9 | | | | 2010
2011 | 397
306 | 41.8
36.8 | 9.0
6.3 | 8.1-9.9
5.6-7.0 | | | | 2011
2012 | | 36.8
37.1 | | | | | | 2011 | 306 | 36.8 | 6.3 | 5.6-7.0 | | | | 2011
2012 | 306
306 | 36.8
37.1 | 6.3
5.3 | 5.6-7.0
4.7-5.9 | | | | 2011
2012
2013 | 306
306
274 | 36.8
37.1
34.9 | 6.3
5.3
4.5 | 5.6-7.0
4.7-5.9
4.0-5.0 | | | | 2011
2012
2013
2014 | 306
306
274
303 | 36.8
37.1
34.9
38.6 | 6.3
5.3
4.5
4.6 | 5.6-7.0
4.7-5.9
4.0-5.0
4.1-5.2 | | | | 2011
2012
2013
2014
2015 | 306
306
274
303
338 | 36.8
37.1
34.9
38.6
41.2 | 6.3
5.3
4.5
4.6
4.9 | 5.6-7.0
4.7-5.9
4.0-5.0
4.1-5.2
4.4-5.4 | | | | 2011
2012
2013
2014
2015
2016 | 306
306
274
303
338
316 | 36.8
37.1
34.9
38.6
41.2
37.9 | 6.3
5.3
4.5
4.6
4.9
4.3 | 5.6-7.0
4.7-5.9
4.0-5.0
4.1-5.2
4.4-5.4
3.8-4.8 | | | Figure 5.3.4: Case fatality rate of AMI (%) by subtype ## 5.4 Symptoms Clinical presentation had consequences on triage categorisation, diagnostic tests prescription and disease management. Symptoms of AMI were considered to be typical when chest pain was continuous and characterised by a duration of at least 20 minutes. Atypical symptoms were defined as chest pain of short duration and/or intermittent with each bout lasting for less than 20 minutes, or pain at unusual sites such as upper abdomen, arm, jaw and neck. Symptoms were classified as others when they were well described, but did not satisfy the criteria for typical or atypical. It included symptoms due to a definite non-cardiac cause, a definite non-atherosclerotic cardiac cause and collapse, whereby patients complained of symptoms before death. Data were deemed to be insufficient when symptoms were not stated in the case notes or electronic
medical records, or lacking in details on description and duration of symptoms. Most of the patients experienced typical symptoms of AMI in the earlier years (Figure 5.4.1). However, symptoms that were neither typical nor atypical became almost as common in later years. The proportion of patients with typical symptoms dropped from 45.8% in 2009 to 34.9% in 2018. The proportion of patients with other symptoms that were neither typical nor atypical, rose from 27.1% in 2009 to 35.9% in 2018. STEMI patients were likely to have typical symptoms, whereas NSTEMI patients tended to have non-typical symptoms¹². The drop in the proportion of patients with typical symptoms was likely caused by the drop in proportion of STEMI patients over the years (Table 5.1.8). Figure 5.4.1: Type of AMI symptoms (%) ¹² Kirchberger I et al. Patient-reported symptoms in acute myocardial infarction: differences related to ST-segment elevation. Journal of Internal Medicine 2011; 270(1): 58-64. Consistently across the years, the three most common presenting symptoms of AMI were chest pain, breathlessness and diaphoresis. While about half of the patients had chest pain (52.8%) and breathlessness (51.0%) accompanying onset of AMI in 2018, about a quarter of them (23.0%) had diaphoresis (Figure 5.4.2). The proportions of patients with chest pain and diaphoresis dropped gradually over the years. As STEMI patients are more likely to experience these two symptoms compared to NSTEMI patients, the drop in proportion of STEMI patients (Table 5.1.8) likely resulted in the drop in proportions of patients who encountered chest pain and diaphoresis over the years. As a patient could have multiple symptoms, the percentages in Figure 5.4.2 will not add up to 100% for each year. 60 50 % of episodes 40 30 20 10 Year of onset 2009 2010 2011 2012 2013 2014 2018 2015 2016 2017 Chest pain 59.7 59.9 58.0 58.3 56.4 55.2 52.5 53.0 50.2 52.8 Breathlessness 52.0 54.9 55.1 55.7 50.3 51.0 54.7 53.1 50.1 51.0 Diaphoresis 33.5 26.7 23.2 23.0 32.6 31.6 31.3 29.6 28.3 26.2 Epigastric pain 5.4 5.7 5.8 4.8 5.1 5.2 4.5 4.4 3.9 4.4 Back pain 4.9 5.2 5.0 5.7 5.2 5.3 5.8 5.1 4.9 5.0 Shoulder pain 4.3 4.0 4.0 4.7 3.9 4.2 4.3 4.2 3.9 4.4 Jaw pain 2.7 2.9 3.0 2.7 3.0 3.4 3.3 3.2 3.2 3.2 Syncope 1.7 1.9 1.4 1.9 1.8 1.8 1.6 1.3 1.3 1.3 Figure 5.4.2: Presenting symptoms of AMI (%) #### 5.5 Risk Factors Hypertension, hyperlipidemia, diabetes, overweight and smoking are well established modifiable risk factors of AMI¹³. Hypertension, hyperlipidemia and diabetes were defined as positive if there was history of the condition or if it was newly diagnosed during index admission. Overweight referred to body mass index (BMI) of 23 kg/m² and above as increased risk for cardiovascular disease and diabetes was found among Asian populations with this BMI range¹⁴. Smoking included former and current smoker. Past AMI or revascularisation (CABG or PCI) included history of AMI and revascularisation done for any heart disease. As a patient could have multiple risk factors, the percentages in Figure 5.5.1 will not add up to 100% for each year. Hypertension and hyperlipidemia were consistently the two most common risk factors among AMI patients across the years (Figure 5.5.1). 74.8% of the patients had hypertension and 72.7% had hyperlipidemia in 2018. Overweight, diabetes and smoking were also prevalent among AMI patients, with 58.7%, 50.4% and 44.0% of them being overweight, diabetic and smokers respectively in 2018. The proportions of patients with hypertension, hyperlipidemia, overweight and history of AMI or revascularisation rose slightly over the years, while the proportion of patients who smoked dropped slightly. As NSTEMI patients tend to be older (Table 5.1.9a and 5.1.9b), hypertension, diabetes, hyperlipidemia and history of AMI or revascularisation were more prevalent among NSTEMI than STEMI patients (Figure 5.5.2). However, overweight and smoking were more prevalent among STEMI patients. ⁻ ¹³ Salim Y et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2014; 364: 937-952. ¹⁴ WHO expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363: 157-163. Figure 5.5.1: Risk factors of AMI (%) Figure 5.5.2: Risk factors (%) by AMI subtype in 2018 #### **Door-to-Balloon Time** Door-to-balloon (DTB) time refers to the time from the first medical contact to the start of primary PCI (first device time). The timeliness of hospitals in treating STEMI through primary PCI is indicated by the DTB time. Imprecise recording of the time of first medical contact and the start time of primary PCI by the hospitals will affect the accuracy of DTB time. The targeted DTB time recommended by the American Heart Association is within 90 minutes¹⁵. Studies have shown that direct ambulance admission to the catheterisation laboratory significantly reduces DTB time¹⁶. There are two main types of ambulance in Singapore: SCDF public emergency ambulance and non-SCDF private non-emergency ambulance. The utilisation of SCDF ambulance was captured by the SMIR from 2010 onwards. The utilisation of SCDF ambulance among STEMI patients fluctuated at around 50% over the years (Figure 5.6.1). Non-SCDF transport included non-SCDF private ambulance, public transport, personal private transport and walk-in. Figure 5.6.1: Mode of arrival (%) among STEMI ¹⁵ Antman EM et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). Journal of American College of Cardiology 2004; 94: 722-774. ¹⁶ Dorsch MF et al. Direct ambulance admission to the cardiac catheterization laboratory significantly reduces door-to-balloon times in primary percutaneous coronary intervention. American Heart Journal 2008; 155(6): 1054-1058. Patients who were admitted for a non-AMI condition but developed AMI during hospitalisation, patients who were transferred from another hospital, and patients who experienced non-system delays¹⁷, were excluded from the calculation of DTB time. These exclusion criteria were applied as the DTB time would be abnormally short or long under such scenarios. The median DTB time improved from 69 (IQR 54-91) minutes in 2009 to 51 (IQR 41-66) minutes in 2018 among STEMI patients (Figure 5.6.2). Similarly, the proportion of STEMI patients with DTB time of 90 minutes or less improved from 74.7% in 2009 to 95.2% in 2018. This improvement was driven by the efficiency in the healthcare delivery system comprising of the early response teams and hospitals. For example, acute hospitals within the National University Health System cluster has been collaborating by having a joint manpower support in the delivery of primary PCI within the western region of Singapore to ensure that STEMI patients receive timely medical attention. The median DTB time was consistently shorter for STEMI patients who utilised the SCDF ambulance (45 minutes in 2018) than those who relied on other modes of transport (61 minutes in 2018) across the years. Similarly, the proportion of STEMI patients with DTB time of 90 minutes or less was consistently higher among those who arrived at the hospital via the SCDF ambulance (97.6% in 2018) than those who arrived via other modes of transport (92.1% in 2018) across the years. When a STEMI diagnosis is determined in the pre-hospital setting through the SCDF emergency medical system and the patient is triaged for a primary PCI, he/she will bypass the Emergency Department upon arrival at the hospital and be transported directly to the catheterisation laboratory, thereby saving DTB time, which translates to reduction in mortality¹⁸. ¹⁷ The SMIR only started collecting this variable from 2012 onwards. Non-system delay refers to delay in primary PCI due to patient's condition. It includes: unfit for primary PCI at the point of hospital arrival (indicated by cardiopulmonary resuscitation, direct current shock, cardiogenic shock, deterioration before or during primary PCI), requirement for other procedure or test prior to primary PCI, equivocal ECG, late presentation, delayed consent. System delay refers to delay in primary PCI due to hospital's system. It includes: delay in the process leading to the start of primary PCI, catheterisation laboratory being occupied, procedure difficulty, uptriage, missed diagnosis, unknown reason. ¹⁸ Nallamothu BK et al. Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: a retrospective study. Lancet 2015; 385(9973): 1114-1122. 100 90 80 70 60 50 40 30 20 10 % of STEMI episodes with DTB within 90 min 75 70 DTB time (minute) 65 60 55 50 45 40 0 Year of onset 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Overall DTB time within 90 min (%) 74.7 73.5 76.2 88.6 95.4 93.9 94.2 94.9 95.2 93.8 SCDF DTB time within 90 min (%) 76.9 79.3 93.4 96.2 97.6 97.1 97.2 97.4 97.6 Non-SCDF DTB time within 90 min (%) 70.2 90.7 92.5 89.9 91.3 91.4 92.1 72.0 82.6 Overall median DTB time (min) 69 70 56 55 66 59 54 55 54 51 SCDF median DTB time (min) 49 47 47 45 66 62 54 51 48 Non-SCDF median DTB time (min) 74 63 62 60 62 61 72 65 60 Figure 5.6.2: DTB time by mode of arrival among STEMI ### 6. CONCLUSION The top contributor to the combined burden of early death and disability in Singapore was cardiovascular diseases and they accounted for 14.2% of the total disability-adjusted life years in 2017¹⁹. It is therefore important for individuals with high risk of AMI to take preventive action. One can reduce his/her chances of developing AMI by adopting a healthy lifestyle, such as eating all food in moderation and opting for healthier
products, exercising and maintaining a healthy weight, avoiding smoking, going for health screening and follow-ups, and controlling blood pressure, cholesterol and glucose levels well. For individuals with symptoms of AMI, seeking medical help promptly plays a crucial role in prognosis. For individuals who survived an AMI, adherence to medication and healthy lifestyle can reduce the risk of subsequent cardiovascular event and death. - ¹⁹ The Burden of Disease in Singapore, 1990-2017. Ministry of Health, Singapore.